Skip to main content
Log in

Thermomechanical properties of ethylene-propylene-diene terpolymer/organoclay nanocomposites and foam processing in supercritical carbon dioxide

  • Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

EPDM/organoclay nanocomposites were prepared by a melt mixing of a semicrystalline EPDM grafted with maleic anhydride and an organoclay (Cloisite 20A) in an internal mixer. XRD and TEM analysis revealed that the EPDM/clay forms a partially exfoliated nanocomposite and the silicate layers of the clay are uniformly dispersed at a nanometer scale in the rubber matrix. DSC studies indicated that the clay nanoparticles caused an increase in the nonisothermal crystallization temperature of the EPDM. Tensile and dynamic mechanical analysis showed that a small amount of the clay nanoparticles effectively enhanced the stiffness of the EPDM without adversely affecting its flexibility. The EPDM/clay nanocomposites were used to produce foams by using a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The exfoliated nanocomposite produced a microcellular foam with average cell size as small as 6.23 μm and cell density as high as 2.4×1010 cell/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994).

    Article  CAS  Google Scholar 

  2. H. Shi, T. Lan and T. J. Pinnavaia, Chem. Mater., 8, 1584 (1996).

    Article  CAS  Google Scholar 

  3. L.A. Utracki, Clay-containing polymeric nanocomposites, Rapra Technology Ltd., Shawbury, UK (2004).

    Google Scholar 

  4. J.W. Cho and D. R. Paul, Polymer, 42, 1083 (2001).

    Article  CAS  Google Scholar 

  5. T. D. Fornes, P. J. Yoon, H. Keskkula and D. R. Paul, Polymer, 42, 9929 (2001).

    Article  CAS  Google Scholar 

  6. S. R. Lee, H. M. Park, H. Lim, T. Kang, X. Li, W. J. Cho and C. S. Ha, Polymer, 43, 2495 (2002).

    Article  CAS  Google Scholar 

  7. Z. Liu, K. Chen and D. Yan, Eur. Polym. J., 39, 2359 (2003).

    Article  CAS  Google Scholar 

  8. J. C. Huang, Z. Zhu, J. Yin, X. Qian and Y.Y. Sun, Polymer, 42, 873 (2001).

    Article  CAS  Google Scholar 

  9. N. Hasegawa, H. Okamoto, M. Kawasumi and A. Usuki, J. Appl. Polym. Sci., 74, 3359 (1999).

    Article  CAS  Google Scholar 

  10. N. Hasegawa, H. Okamoto, M. Kato and A. Usuki, J. Appl. Polym. Sci., 78, 1918 (2000).

    Article  CAS  Google Scholar 

  11. N. Hasegawa, H. Okamoto and A. Usuki, J. Appl. Polym. Sci., 93, 758 (2004).

    Article  CAS  Google Scholar 

  12. K. H. Wang, M. H. Choi, C. M. Koo, Y. S. Choi and I. J. Chung, Polymer, 42, 9819 (2001).

    Article  CAS  Google Scholar 

  13. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu, Comp. Sci. Technol., 65, 2344 (2005).

    Article  CAS  Google Scholar 

  14. P. S. Chum, C. K. Kao and G.W. Knight, Plast. Eng., June, 21 (1995).

    Google Scholar 

  15. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, T. Nakayama, M. Takada, M. Ohshima, A. Usuki, N. Hasegawa and H. Okamoto, Polym. Eng. Sci., 42, 1907 (2002).

    Article  CAS  Google Scholar 

  16. K. Taki, T. Yanagimoto, E. Funami, M. Okamoto and M. Ohshima, Polym. Eng. Sci., 44, 1004 (2004).

    Article  CAS  Google Scholar 

  17. M. Mitsunaga, Y. Ito, S. S. Ray, M. Okamoto and K. Hironaka, Macromol. Mater. Eng., 288, 543 (2003).

    Article  CAS  Google Scholar 

  18. Y. Ito, M. Yamashita and M. Okamoto, Macromol. Mater. Eng., 291, 773 (2006).

    Article  CAS  Google Scholar 

  19. Y. Fujimoto, S. S. Ray, M. Okamoto, A. Ogami, K. Yamada and K. Ueda, Macromol. Rapid Commun., 24, 457 (2003).

    Article  CAS  Google Scholar 

  20. Y. Di, S. Iannace, E. Di Maio and L. Nicolais, J. Polym. Sci.: Part B: Polym. Phys., 43, 689 (2005).

    Article  CAS  Google Scholar 

  21. X. Han, C. Zeng, L. J. Lee, K.W. Koelling and D. L. Tomasko, Polym. Eng. Sci., 43, 1261 (2003).

    Article  CAS  Google Scholar 

  22. W. Strauss and N. A. D’souza, J. Cell. Plast., 40, 229 (2004).

    Article  CAS  Google Scholar 

  23. C. Zeng, X. Han, L. J. Lee and K.W. Koelling, Adv. Mater., 15, 1743 (2003).

    Article  CAS  Google Scholar 

  24. Y.W. Chang, D. S. Lee and S.Y. Bae, Polym. Int., 55, 184 (2006).

    Article  CAS  Google Scholar 

  25. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997).

    Article  CAS  Google Scholar 

  26. L. Priya and J. P. Jog, J. Polym. Sci. Part B: Polym. Phys., 41, 31 (2003).

    Article  CAS  Google Scholar 

  27. Z. Wang and T. J. Pinnavaia, Chem. Mater., 10, 3769 (1998).

    Article  CAS  Google Scholar 

  28. R. Xu, E. Manias, A. J. Snyder and J. Runt, J. Biomed. Mater. Res., 64A, 114 (2003).

    Article  CAS  Google Scholar 

  29. T. Amornsakchai, B. Sinpatanapan, S. Bualek-Limcharoen and W. Meesiri, Polymer, 40, 2993 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Wook Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YW., Kim, S., Kang, S.C. et al. Thermomechanical properties of ethylene-propylene-diene terpolymer/organoclay nanocomposites and foam processing in supercritical carbon dioxide. Korean J. Chem. Eng. 28, 1779–1784 (2011). https://doi.org/10.1007/s11814-011-0002-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0002-z

Key words

Navigation