Skip to main content
Log in

Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to increase pyruvate production efficiency in a multi-vitamin auxotrophic yeast, Torulopsis glabrata. This was achieved by decreasing intracellular NADH content through the introduction of two different NADH reoxidation pathways: one in the cytoplasm and the other in mitochondria. A nox(encoding a cytoplasmic H2O-forming NADH oxidase) and an AOX1 (encoding a mitochondrial alternative oxidase) were successfully expressed heterologously in T. glabrata, resulting in a decrease in the NADH and ATP contents of 55% and 26%, (in T. glabrata NOX) and 45% and 47% (in T. glabrata AOX), respectively. The decreases in nucleotide concentrations led to increases in the glucose consumption rate, the pyruvate yield and pyruvate productivity of 27%, 15% and 22% (in T. glabrata NOX) and 38%, 21%, and 29% (in T. glabrata AOX), respectively, compared with the corresponding values of the control. We conclude that this method provides an alternative way to enhance the production efficiency of NADH-related metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Zhu, M. A. Eiteman, R. Altman and E. Altman, Appl. Environ. Microbiol., 74, 6649 (2008).

    Article  CAS  Google Scholar 

  2. Y. Li, J. Chen and S.Y. Lun, Appl. Biochem. Biotechnol., 57, 451 (2001).

    CAS  Google Scholar 

  3. C. Larsson, A. Nilsson, A. Blomberg and L. Gustafsson, J. Bacteriol., 179, 7243 (1997).

    CAS  Google Scholar 

  4. T. B. Causey, K. T. Shanmugam, L. P. Yomano and L. O. Ingram, Proc. Natl. Acad. Sci. USA, 101, 2235 (2004).

    Article  CAS  Google Scholar 

  5. L. Pritchard and D. B. Kell, Eur. J. Biochem., 269, 3894 (2002).

    Article  CAS  Google Scholar 

  6. G. S. Chuang and M. S. Chiou, Korean J. Chem. Eng., 23, 419 (2006).

    Article  CAS  Google Scholar 

  7. G. N. Vemuri, M. A. Eiteman, J. E. McEwen, L. Olsson and J. Nielsen, Proc. Natl. Acad. Sci. USA, 104, 2402 (2007).

    Article  CAS  Google Scholar 

  8. K.G. Alberti, J. Clin. Pathol. Suppl. (R Coll Pathol), 11, 14 (1977).

    CAS  Google Scholar 

  9. M. Rigoulet, H. Aguilaniu, N. Averet, O. Bunoust, N. Camougrand, X. Grandier-Vazeille, C. Larsson, I. L. Pahlman, S. Manon and L. Gustafsson, Mol. Cell. Biochem., 256–257, 73 (2004).

    Article  Google Scholar 

  10. L. M. Liu, Y. Li, H. Li and J. Chen, FEMS Yeast Res., 6, 1117 (2006).

    Article  CAS  Google Scholar 

  11. J.W. Zhou, L. X. Huang, L. M. Liu and J. Chen, J. Biotechnol., 144, 120 (2009).

    Article  CAS  Google Scholar 

  12. M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki and M. Hirakawa, Nucleic. Acid. Res., 34, D354 (2006).

    Article  CAS  Google Scholar 

  13. J. Hou, N. F. Lages, M. Oldiges and G.N. Vemuri, Metab. Eng., 11, 253 (2009).

    Article  CAS  Google Scholar 

  14. C. H. Johnson, J. T. Prigge, A. D. Warren and J. E. McEwen, Yeast, 20, 381 (2003).

    Article  CAS  Google Scholar 

  15. S. Guerrero-Castillo, M. Vazquez-Acevedo, D. Gonzalez-Halphen and S. Uribe-Carvajal, Biochim. Biophys. Acta, 1787, 75 (2009).

    Article  CAS  Google Scholar 

  16. S. Heux, R. Cachon and S. Dequin, Metab. Eng., 8, 303 (2006).

    Article  CAS  Google Scholar 

  17. J.W. Zhou, Z. Dong, L. Liu, G. Du and J. Chen, J. Microbiol. Methods, 76, 70 (2009).

    Article  CAS  Google Scholar 

  18. L. M. Liu, Y. Li, H. Z. Li and J. Chen, Lett. Appl. Microbiol., 39, 199 (2004).

    Article  CAS  Google Scholar 

  19. Y. Qin, Z.Y. Dong, J.W. Zhou, L. M. Liu and J. Chen, Wei Sheng Wu Xue Bao, 49, 1483 (2009).

    CAS  Google Scholar 

  20. M. Moreira dos Santos, V. Raghevendran, P. Kotter, L. Olsson and J. Nielsen, Metab. Eng., 6, 352 (2004).

    Article  Google Scholar 

  21. C. Bernofsky and M. Swan, Anal. Biochem., 53, 452 (1973).

    Article  CAS  Google Scholar 

  22. M. R. Leonardo, P. R. Cunningham and D. P. Clark, J. Bacteriol., 175, 870 (1993).

    CAS  Google Scholar 

  23. L.M. Liu, Y. Li, Z. Shi, G. Du and J. Chen, J. Biotechnol., 126, 173 (2006).

    Article  CAS  Google Scholar 

  24. A. Valadi, K. Granath, L. Gustafsson and L. Adler, J. Biol. Chem., 279, 39677 (2004).

    Article  CAS  Google Scholar 

  25. E. Postma, C. Verduyn, W. A. Scheffers and J. P. Van Dijken, Appl. Environ. Microbiol., 55, 468 (1989).

    CAS  Google Scholar 

  26. A. P. Lin and L. McAlister-Henn, J. Biol. Chem., 277, 22475 (2002).

    Article  CAS  Google Scholar 

  27. R. Klassen, J. Fricke, A. Pfeiffer and F. Meinhardt, Biotechnol. Lett., 30, 1041 (2008).

    Article  CAS  Google Scholar 

  28. H. Muller, C. Hennequin, J. Gallaud, B. Dujon and C. Fairhead, Eukaryot. Cell., 7, 848 (2008).

    Article  CAS  Google Scholar 

  29. K. J. Livak and T. D. Schmittgen, Methods, 25, 402 (2001).

    Article  CAS  Google Scholar 

  30. A. L. Moore and J. N. Siedow, Biochim. Biophys. Acta, 1059, 121 (1991).

    Article  CAS  Google Scholar 

  31. D. A. Berthold, N. Voevodskaya, P. Stenmark, A. Graslund and P. Nordlund, J. Biol. Chem., 277, 43608 (2002).

    Article  CAS  Google Scholar 

  32. D. D. Zhang, N. Liang, Z. P. Shi, L. M. Liu, J. Chen and G. C. Du, Biotechnol. Bioprocess. Eng., 14, 134 (2009).

    Article  CAS  Google Scholar 

  33. C. Larsson, I. L. Pahlman and L. Gustafsson, Yeast, 16, 797 (2000).

    Article  CAS  Google Scholar 

  34. G. von Jagow and M. Klingenberg, Eur. J. Biochem., 12, 583 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., Johnson, C.H., Liu, L. et al. Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency. Korean J. Chem. Eng. 28, 1078–1084 (2011). https://doi.org/10.1007/s11814-010-0483-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0483-1

Key words

Navigation