Skip to main content
Log in

Removal of polyaromatic hydrocarbons from scrap tires by solvent extraction

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study analyzes polycyclic aromatic hydrocarbon (PAH) compounds released from scrap tires by GC/MS and introduces a simple extraction process at ambient conditions to remove PAHs from scrap tires. The PAH species released from scrap tires included seven PAH compounds with high molecular weight and 4- and 5-aromatic rings and total-PAH content of 159 mg/L. When scrap tires were extracted using hot water (180 °C) for 3 h, the overall removal efficiency was 53%, indicating that PAHs were not adequately removed by this method. However, using organic solvents, the overall PAH removal efficiency improved to 82% for propionic acid and 70% for acetic acid, because the mass transfer of PAHs within scrap tires increases with decreasing dielectric constant. The PAH removal efficiency was dependent on solvent type and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Giray and Ö. Sönmez, Fuel Process. Technol., 85, 251 (2004).

    Article  CAS  Google Scholar 

  2. G. S. Miguel, G. D. Fowler and C. J. Sollars, Ind. Eng. Chem. Res., 37, 2430 (1998).

    Article  Google Scholar 

  3. E.M. Vizuete, A. M. Garcia, A. N. Gisbert, C. F. Gonzalez and V.G. Serrano, Micropor. Mesopor. Mater., 67, 35 (2004).

    Article  Google Scholar 

  4. Y. C. Chien, S. Ton, M.H. Lee, T. Chia, H.Y. Shu and Y. S. Wu, Sci. Total Environ., 309, 35 (2003).

    Article  CAS  Google Scholar 

  5. C. D. Simpson, W. R. Cullen, K. B. Quinlan and K. J. Reimer, Chemosphere, 31, 4143 (1995).

    Article  CAS  Google Scholar 

  6. J. S. Levitt, A. L. N’Guessan, K. L. Rapp and M. C. Nyman, Water Res., 37, 3016 (2003).

    Article  CAS  Google Scholar 

  7. M. J. Jacinto, O.H. C. F. Santos, R. Landers, P.K. Kiyohara and L. M. Rossi, Appl. Catal. B: Environ., 90, 688 (2009).

    Article  CAS  Google Scholar 

  8. J. Kronholm, J. Kalpala, K. Hartonen and M.-L. Riekkola, J. Supercrit. Fluids, 23, 123 (2002).

    Article  CAS  Google Scholar 

  9. O. Zuloaga, L. J. Fitzpatrick, N. Etxebarria and J. R. Dean, J. Environ. Monit., 2, 634 (2000).

    Article  CAS  Google Scholar 

  10. H. J. Vandenburg, A. A. Clifford, K. D. Bartle, R. E. Carlson, J. Carroll and I. D. Newton, Analyst, 124, 1707 (1999).

    Article  CAS  Google Scholar 

  11. K. Hartonen, G. Meissner, T. Kesala and M. L. Riekkola, J. Microcolumn Sep., 12(7), 412 (2000).

    Article  CAS  Google Scholar 

  12. E. Ferrarese, G. Reottola and I. A. Oprea, J. Hazad. Mater., 152, 128 (2008).

    Article  CAS  Google Scholar 

  13. S. R. Wild and K. C. Jones, Environ. Pollut., 88, 91 (1995).

    Article  CAS  Google Scholar 

  14. L. T.C. Bonten, T. C. Grotenhuis and W.H. Rulkens, Chemosphere, 38, 3627 (1999).

    Article  CAS  Google Scholar 

  15. G. Cornelissen, P. C. M.V. Noort, J. R. Parsons and H. A. J. Govers, Environ. Sci. Technol., 31, 454 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Whan Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.S., Yoo, J.W. Removal of polyaromatic hydrocarbons from scrap tires by solvent extraction. Korean J. Chem. Eng. 28, 1065–1069 (2011). https://doi.org/10.1007/s11814-010-0462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0462-6

Key words

Navigation