Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 3, pp 643–648 | Cite as

Simulation of CO2 removal in a split-flow gas sweetening process

  • Hyung Kun Bae
  • Sung Young Kim
  • Bomsock LeeEmail author
Article

Abstract

Split-flow gas sweetening is known to consume less energy than a conventional gas sweetening process when the inlet sour gas contains a high concentration of acid gases. In this work, a computer simulation of a split-flow natural gas sweetening process based on absorption/stripping process with alkanoamine (MEA and DGA) solutions, using Aspen plus, was performed. The input of parameters such as the concentration of sour gases (CO2, H2S) in the feed gas has been examined. Simulation results show that the split-flow gas sweetening process can reduce the reboiler duty of a stripping tower better than the conventional gas sweetening process according to the concentration of CO2 in the feed gas.

Key words

Split-flow CO2 Removal Gas Sweetening Aspen Plus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Mohebbi, R. M. Behbahani and M. Moshfeghian, Oil & Gas Journal, 105(28), 70 (2007).Google Scholar
  2. 2.
    B. D. Bhide, A. Voskericyan and S. A. Stern, J. Membrane Sci., 140, 27 (1998).CrossRefGoogle Scholar
  3. 3.
    R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas and D. Gelowitz, Ind. Eng. Chem. Res., 45, 2414 (2006).CrossRefGoogle Scholar
  4. 4.
    T. Ball and R. Veldman, Chem. Eng. Prog., 87, 67 (1991).Google Scholar
  5. 5.
    R. H. Weiland, M. Rawal and R. G. Rice, AIChE J., 28(6), 963 (1982).CrossRefGoogle Scholar
  6. 6.
    R. H. Weiland and John C. Dingman, GasTIPS®, 8(1), 21 (2002).Google Scholar
  7. 7.
    H. M. Kvamsdal and G. T. Rochelle, Ind. Eng. Chem. Res., 47, 867 (2008).CrossRefGoogle Scholar
  8. 8.
    S. M. Lee, H. J. Song, S. Maken, S. K. Yoo, J.W. Park, S.W. Kim, J.G. Shim and K. R. Jang, Korean J. Chem. Eng., 25(1), 1 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Mofarahi, Y. Khojasteh, H. Khaledi and A. Farahnak, Energy, 33, 1311 (2008).CrossRefGoogle Scholar
  10. 10.
    M. S. Ko, C. I. Park and H. Y. Kim, J. Korean Inst. Gas, 7(3), 7 (2003).Google Scholar
  11. 11.
    M. R. Rahimpour and A. Z. Kashkooli, Chem. Eng. Process., 43, 857 (2004).CrossRefGoogle Scholar
  12. 12.
    Aspen Technology Inc., Technical report, Physical Property Methods and Models.Google Scholar
  13. 13.
    L. Lyddon and H. Nguyen, Analysis of various flow schemes for sweetening with amines, Bryan Research and Engineering, Inc. (2006).Google Scholar
  14. 14.
    J. C. Polasek, J. A. Bullin and S. T. Donnelly, Alternative flow schemes to reduce capital and operating costs of amine sweetening units, Bryan Research and Engineering, Inc. (2006).Google Scholar
  15. 15.
    R. L. Kent and B. Eisenberg, Hydrocarbon Processing, 55(2), 87 (1976).Google Scholar
  16. 16.
    A. J. Kidnay and W. R. Parrish, Fundamentals of natural gas processing, Taylor & Francis Group, Boca Raton (2006).Google Scholar
  17. 17.
    T. F. Moore, J. C. Dingman, F. L. Johnson, Jr. and Texaco Chemical Company, Austin, TX 78761, Environmental Progress, 3(3), 207 (1984).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of EngineeringKyung Hee UniversityYongin-si, Gyeonggi-doKorea

Personalised recommendations