Skip to main content
Log in

Sorptive removal and recovery of nickel(II) from an actual effluent of electroplating industry: Comparison between Escherichia coli biosorbent and Amberlite ion exchange resin

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The removal and recovery of nickel(II) from wastewater of an electroplating factory was investigated using the waste Escherichia coli biomass as the biosorbent. The results were compared with those from using Amberlite IRN-150 as a commercial sorbent resin. The resin showed better performance with a q max value of 30.48 mg/g compared to 26.45 mg/g for the biomass, as predicted by the Langmuir isotherm model. Kinetic experiments revealed that the biosorption equilibrium was attained within 15 min. In the recycling of the sorbents, the desorption of nickel(II) from Amberlite was only 50%, which is too low for the adsorption performance of the resin to be maintained at an economic level in subsequent cycles. In contrast, the biomass exhibited reasonable adsorption-desorption performance over three repeated cycles. The capability for repeated use of the sorbent over several cycles and for recovery of the metal ions is the main advantage of the waste biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Volesky and Z. R. Holan, Biotechnol. Prog., 11, 235 (1995).

    Article  CAS  Google Scholar 

  2. G. Selvakumari, M. Murugesan, S. Pattabi and M. Sathishkumar, Bull. Environ. Contam. Toxicol., 69, 195 (2002).

    Article  CAS  Google Scholar 

  3. A. L. Mukherjee, Environmental Pollution and Health Hazardscauses and control, Golgotia publications, New Delhi (1986).

    Google Scholar 

  4. S. P. Parker, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York (1980).

    Google Scholar 

  5. A. Selatnia, A. Madani, M. Z. Bakhti, L. Kertous, Y. Mansouri and R. Yous, Miner. Eng., 17, 903 (2004).

    Article  CAS  Google Scholar 

  6. A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K. J. Haralambous and M. Loizidou, Sep. Puri. Technol., 39, 181 (2004).

    Article  CAS  Google Scholar 

  7. N. Bukhari, C. M. Ashraf and M. Mazhar, J. Membr. Sci., 283, 182 (2006).

    Article  CAS  Google Scholar 

  8. A. Agrawal, M. K. Manoj, S. Kumari, D. Bagchi, V. Kumar and B. D. Pandey, Miner. Eng., 21, 1126 (2008).

    Article  CAS  Google Scholar 

  9. M. Tanaka, Y. Huang, T. Yahagi, M. K. Hossain, Y. Sato and H. Narita, Sep. Purif. Technol., 62, 97 (2008).

    Article  CAS  Google Scholar 

  10. P. R. Puranik and K. M. Paknikar, J. Biotechnol., 55, 113 (1997).

    Article  CAS  Google Scholar 

  11. I. Langmuir, J. American Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  12. H. Freundlich, J. Phys. Chem., 57, 385 (1906).

    CAS  Google Scholar 

  13. S. Lagergren and B. K. Svenska, Veterskapsakad Handlingar., 24, 1 (1898).

    Google Scholar 

  14. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999).

    Article  CAS  Google Scholar 

  15. R. Nadeem, T. M. Ansari and A. M. Khalid, J. Hazard. Mater., 156, 64 (2008).

    Article  CAS  Google Scholar 

  16. S. K. Das and A. K. Guha, Colloid Surf. B., 60, 46 (2007).

    Article  CAS  Google Scholar 

  17. F. Pagnanelli, M. P. Papini, L. Toro, M. Trifoni and F. Veglio, Environ. Sci. Technol., 34, 2773 (2000).

    Article  CAS  Google Scholar 

  18. G. C. Panda, S. K. Das and A. K. Guha, Collod Surf. B., 62, 173 (2008).

    Article  CAS  Google Scholar 

  19. S.W. Won, S. B. Choi and Y. S. Yun, Biochem. Eng. J., 28, 208 (2006).

    Article  CAS  Google Scholar 

  20. S. Schiewer and B. Volesky, Biosorption processes for heavy metal removal, Environmental Microbe-Metal Interactions, ASM Press, Washington DC (2002).

    Google Scholar 

  21. K. Vijayaraghavan, M.W. Lee and Y. S. Yun, Biochem. Eng. J., 41, 228 (2008).

    Article  CAS  Google Scholar 

  22. F. M. Doyle and Z. Liu, J. Colloid Interf. Sci., 258, 396 (2003).

    Article  CAS  Google Scholar 

  23. Y. Guangyu and V. Thiruvenkatachari, Water Res., 37, 4486 (2003).

    Article  Google Scholar 

  24. I. Mustafa, Colloid Surf. B., 62, 97 (2008).

    Article  Google Scholar 

  25. V. Padmavathy, Bioresour. Technol., 99, 3100 (2008).

    Article  CAS  Google Scholar 

  26. C. Zhen, M. Wei and H. Mei, J. Hazard. Mater., 155, 327 (2008).

    Article  Google Scholar 

  27. H. H. Alaa and N. M. Catherine, Bioresour. Technol., 97, 692 (2006).

    Article  Google Scholar 

  28. Z. A. Qodah, Desalination., 196, 164 (2006).

    Article  Google Scholar 

  29. O. Ayla and O. Dursun, J. Hazard. Mater., 100, 219 (2003).

    Article  Google Scholar 

  30. S. Deng and Y. P. Ting, Water Res., 39, 2167 (2005).

    Article  CAS  Google Scholar 

  31. H. N. Catherine, V. Bohumil and C. Daniel, Water Res., 41, 2473 (2007).

    Article  Google Scholar 

  32. K. Vijayaraghavan, Clean., 36,3, 299 (2008).

    CAS  Google Scholar 

  33. G. Limousin, J. P. Gaudet, L. Charletm, S. Szenknect, V. Barthes and M. Krimissa, Appl. Geochem., 22, 249 (2007).

    Article  CAS  Google Scholar 

  34. Y. S. Ho, J. F. Porter and G. McKay, Water Air Soil Poll., 141, 1 (2002).

    Article  CAS  Google Scholar 

  35. G. McKay, Y. S. Ho and J. C. P. Ng, Sep. Purif. Meth., 28, 87 (1999).

    Article  CAS  Google Scholar 

  36. A. R. Binupriya, M. Sathishkumar, K. Swaminathan, E. S. Jeong, S. E. Yun and S. Pattabi, Bull. Environ. Contam. Toxicol., 77, 219 (2006).

    Article  CAS  Google Scholar 

  37. M. Iqbal and A. Saeed, Process Biochem., 42, 148 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeoung-Sang Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, I.S., Won, S.W., Choi, S.B. et al. Sorptive removal and recovery of nickel(II) from an actual effluent of electroplating industry: Comparison between Escherichia coli biosorbent and Amberlite ion exchange resin. Korean J. Chem. Eng. 28, 927–932 (2011). https://doi.org/10.1007/s11814-010-0441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0441-y

Key words

Navigation