Skip to main content
Log in

Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of commercially available poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) and Cardotype polyimide (PI) hollow fiber membranes was investigated in removing hydrogen sulfide from methane in a series of bench-scale experiments. It was observed that in the concentration range of hydrogen sulfide in methane from 101 to 401 ppm, the methane permeability decreased in the presence of hydrogen sulfide for Cardo-type polyimide hollow fiber membranes, whereas the PPO membrane performance was not affected. The separation coefficients of hydrogen sulfide/methane were 6 and 4 for PI and PPO membranes, respectively. Effects of temperature on the performance of PI and PPO membranes were investigated. It was observed that the permeabilities of both components of the mixture increased by increasing temperature, whereas the selectivities remained constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Baker, Membrane technology and applications, 2nd Ed., John Wiley & Sons, Ltd. (2004).

  2. B. D. Bhide and S. A. Stern, J. Membr. Sci., 81, 209 (1993).

    Article  CAS  Google Scholar 

  3. B. D. Bhide and S. A. Stern, J. Membr. Sci., 81, 239 (1993).

    Article  CAS  Google Scholar 

  4. B. D. Bhide, A. Voskericyan and S. A. Stern, J. Membr. Sci., 140, 27 (1998).

    Article  CAS  Google Scholar 

  5. J. Hao, P. A. Rice and S. A. Stern, J. Membr. Sci., 209, 177 (2002).

    Article  CAS  Google Scholar 

  6. S. A. Stern, H. Kawakami, A.Y. Houde and G. Zhou, US Patent, 5,591,250 (1997).

  7. G. Chatterjee, A. A. Houde and S. A. Stern, J. Membr. Sci., 135, 99 (1997).

    Article  CAS  Google Scholar 

  8. K. A. Lokhandwala and R.W. Baker, US Patent, 5,407,467 (1995).

  9. R. W. Baker and K. A. Lokhandwala, US Patent, 5,558,698 (1996).

  10. D. L. Klass and C. D. Landahl, US Patent, 4,561,864 (1985).

  11. M. Pourafshari Chenar, M. Soltanieh, T. Matsuura, A. Tabe-Mohammadi and C. Feng, Sep. Purif. Technol., 51, 359 (2006).

    Article  CAS  Google Scholar 

  12. B. J. Story and W. J. Koros, J. Membr. Sci., 67, 191 (1992).

    Article  CAS  Google Scholar 

  13. S. Mortazavi, PhD Thesis, University of Ottawa (2004).

  14. M. Aguilar-Vega and D. R. Paul, J. Polym. Sci. B: Polym. Phys., 31, 1577 (1993).

    Article  CAS  Google Scholar 

  15. G. Chowdhury, B. Kruczek and T. Matsuura (Eds.), “Gas, Vapour and Liquid Separation,” Kluwer Academic Publishers (2001).

  16. N. A. Plate and Y. Yampolskii, “High free volume polymers,” in: D. R. Paul, Y. Yampolskii (Eds.), Polymer Gas Separation Membranes, CRC Press, London (1994).

    Google Scholar 

  17. A. L. Lee, H. L. Feldkirchner, S. A. Stern, A.Y. Houde, J. P. Gamez and H. S. Meyer, Gas Sep. Purif., 9, 35 (1995).

    Article  CAS  Google Scholar 

  18. T. E. Cooley and A. B. Coady, US Patent 4,130,403 (1978).

  19. S. P. Kaldis, G. C. Kapantaidakis and G. P. Sakellaropoulos, J. Membr. Sci., 173, 61 (2000).

    Article  CAS  Google Scholar 

  20. K. A. Lokhandwala and R.W. Baker, US Patent, 5,407,466 (1995).

  21. A. F. Ismail and W. Lorna, Sep. Purif. Technol., 27, 173 (2002).

    Article  CAS  Google Scholar 

  22. T. C. Merkel and L. G. Toy, Macromolecules, 39, 7591 (2006).

    Article  CAS  Google Scholar 

  23. H. Lin, E.V. Wagner, B. D. Freeman, L.G. Toy and R. P. Gupta, Science, 311, 639 (2006).

    Article  CAS  Google Scholar 

  24. S. Kanehashi, T. Nakagawa, K. Nagai, X. Duthie, S. Kentish and G. Stevens, J. Membr. Sci., 298, 147 (2007).

    Article  CAS  Google Scholar 

  25. T. Visser, N. Masetto and M. Wessling, J. Membr. Sci., 306, 16 (2007).

    Article  CAS  Google Scholar 

  26. Y. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung and D.R. Paul, Prog. Polym. Sci., 34, 561 (2009).

    Article  CAS  Google Scholar 

  27. C. A. Scholes, S. E. Kentish and G.W. Stevens, Sep. Purif. Technol. Rev., 38, 1 (2009).

    Article  CAS  Google Scholar 

  28. C. A. Scholes, G.W. Stevens and S. E. Kentish, J. Membr. Sci., 350, 189 (2010).

    Article  CAS  Google Scholar 

  29. C. A. Scholes, G. Q. Chen, G.W. Stevens and S. E. Kentish, J. Membr. Sci., 346, 208 (2010).

    Article  CAS  Google Scholar 

  30. S. Basu, A. Cano-Odena and I. F. J. Vankelecom, Sep. Purif. Technol., 75, 15 (2010).

    Article  CAS  Google Scholar 

  31. I. C. Omole, R. T. Adams, S. J. Miller and W. J. Koros, Ind. Eng. Chem. Res., 49, 4887 (2010).

    Article  CAS  Google Scholar 

  32. W. A. Dietz, J. Gas Chromatogr., 5, 68 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soltanieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chenar, M.P., Savoji, H., Soltanieh, M. et al. Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes. Korean J. Chem. Eng. 28, 902–913 (2011). https://doi.org/10.1007/s11814-010-0437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0437-7

Key words

Navigation