Skip to main content
Log in

Air gap membrane distillation on the different types of membrane

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Seawater desalination through the air gap membrane distillation (AGMD) process shows merit for its ambient operational conditions and low energy consumption. In this paper nine types of commercially available membranes were characterized to understand the membranes more comprehensively. The density, porosity, mean pore radius, liquid entry pressure (LEP), and contact angle (CA) of the membranes were determined. AGMD experiments were performed for the membranes to investigate the membrane difference on permeation flux and salt rejection. The effects of operating parameters such as temperature, flow rate, and NaCl concentration were studied. The 0.22 μm pore size PTFE membrane showed excellent performance for its higher permeability and higher hydrophobicity than other membranes. The mass transfer coefficients for three types of PTFE membranes were calculated from the results of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Kalogirou, Energy Combust. Sci., 31, 242 (2005).

    Article  CAS  Google Scholar 

  2. A. Lamei, P. Van der Zaag and E. von Munch, Energy Policy, 36, 1748 (2008).

  3. K.W. Lawson and D. R. Lloyd, J. Membr. Sci., 124, 1 (1997).

    Article  CAS  Google Scholar 

  4. M. Gryta, A.W. Morawski and M. Tomaszewska, Catal. Today, 56, 159 (2000).

    Google Scholar 

  5. L. Martinez-Diez and F. J. Florido-Diaz, Desalination, 137, 267 (2001).

    Article  CAS  Google Scholar 

  6. S. Nene, S. Kaur, K. Sumod, B. Joshi and K. S. M. S. Raghavarao, Desalination, 147, 157 (2002).

    Article  CAS  Google Scholar 

  7. A. Banat and J. Simandl, J. Membr. Sci., 163, 333 (1993).

    Article  Google Scholar 

  8. M. Gryta, M. Tomaszewska, J. Grzechulska and A.W. Morawski, J. Membr. Sci., 181, 279 (2001).

    Article  CAS  Google Scholar 

  9. H. Udriot, A. Araque and U. Von Stokar, Chem. Eng. J., 54, 87 (1994).

    CAS  Google Scholar 

  10. M. Tomaszewska, M. Gryta and A.W. Morawski, Sci., 102, 113 (1995).

    CAS  Google Scholar 

  11. R. Thiruvenkatachari, M. Matheswaran, T. O. Kwon, I. S. Moon and J.W. Kim, Sep. Sci. Technol., 41, 3187 (2006).

    Article  CAS  Google Scholar 

  12. M. Matheswaran, T. O. Kwon, J.W. Kim and I. S. Moon, J. Ind. Eng. Chem., 13, 965 (2007).

    CAS  Google Scholar 

  13. J.W. Kim, S. E. Park, T.-S. Kim, D.-Y. Jeong and K.-H. Ko, Nukleonika, 49, 137 (2004).

    CAS  Google Scholar 

  14. K. He, H. J. Hwang, M.W. Woo, I. S. Moon, J. Ind. Eng. Chem., DOI:0.1016/j.jiec.2010.10.007 (2010).

  15. A. S. Jonsson, R. Wimmerstedt and A. C. Harrysson, Desalination, 56, 237 (1985).

    Article  Google Scholar 

  16. G. L. Liu, C. Zhu, C. S. Cheung and C.W. Leung, Heat Mass Transfer, 34, 329 (1998).

    Article  CAS  Google Scholar 

  17. A. Fahmi, Abu Al-Rub, Fawzi Banat and Khalid Bani-Melhem, Sci. Technol., 38, 3645 (2003).

    Google Scholar 

  18. J. H. Hanemaaijer, Memstill®, Desalination, 168, 355 (2004).

    Article  CAS  Google Scholar 

  19. A. El Amali, S. Bouguecha and M. Maalej, Desalination, 168, 357 (2004).

    Article  Google Scholar 

  20. M. N. Chemyshov, G.W. Meindersma and A. B. de Haan, Desalination, 157, 315 (2003).

    Article  Google Scholar 

  21. J. Walton, H. Lu, C. Turner, S. Solis and H. Hein, Solar and water heat desalination by membrane distillation, desalination and water purification research and development program report No. 81, College of Engineering, University of Texas at El Paso (2004).

  22. C. Bier and U. Plantikow, Solar powered desalination by membrane distillation, IDA World congress on desalination and water science, Abu Dhabi (1995).

  23. G.W. Meindersma, C. M. Guijt and A. B. de Haan, Desalination, 187, 291 (2007).

    Article  Google Scholar 

  24. C. Feng, K. C. Khulbe, T. Matsuura, R. Gopal, S. Kaur, S. Ramakrishna and M. Khayet, J. Membr. Sci., 311, 1 (2008).

    Article  CAS  Google Scholar 

  25. R. Chouikh, S. Bouguecha and M. Dhahbi, Desalination, 181, 257 (2005).

    Article  CAS  Google Scholar 

  26. M. C. Garci-Payo, M. A. lzquierdo-Gill and C. Fernandez-Pineda, J. Membr. Sci., 169, 61 (2000).

    Article  Google Scholar 

  27. L. Palacio, P. Prádanos, J. I. Calvo and A. Hernández, Thin Solid Films, 348, 22 (1999).

    Article  CAS  Google Scholar 

  28. M. S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, J. Membrane Sci., 285, 4 (2006).

    Article  CAS  Google Scholar 

  29. Kevin W. Lawson and Douglas R. Lloyd, J. Membrane Sci., 124, 1 (1997).

    Article  CAS  Google Scholar 

  30. S. Bouguecha and M. Dhahbi, Desalination, 152, 237 (2002).

    Article  Google Scholar 

  31. L. Gazagnes, S. Cerneaux, M. Persin, E. Prouzet and A. Larbot, Desalination, 217, 260 (2007).

    Article  CAS  Google Scholar 

  32. R.W. Schofield, A.G. Fane, C. J. D. Fell and R. Macoun, Desalination, 77, 279 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Shik Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, K., Hwang, H.J. & Moon, I.S. Air gap membrane distillation on the different types of membrane. Korean J. Chem. Eng. 28, 770–777 (2011). https://doi.org/10.1007/s11814-010-0415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0415-0

Key words

Navigation