Skip to main content
Log in

Dynamic-mechanical behavior of polyethylenes and ethene/α-olefin-copolymers: Part II. α- and β-relaxation

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Several ethylene homopolymers and ethene/ α-olefin-copolymers with crystallinities ranging between 85 and 12% were characterized by dynamic-mechanical measurements. The occurring relaxations were correlated to the crystallinity of the polymeric materials and to morphology. The α-relaxation, being attributed to interlamellar shear, was found to be around 60 °C with activation energies of about 120 kJ/mol in samples with more than 42% crystallinity. The β-transition shows a much greater variety among the different samples characterized. Its relaxation temperatures vary between −40 and 10 °C with activation energies between 200 and 400 kJ/mol. The α- and β-relaxation of several quenched samples with crystallinities between 63 and 42% were found to overlap, thus producing bimodal maxima and different activation energies from the Arrhenius plots. A separation of these overlapping relaxations was only possible by measuring the relaxations over a frequency range of more than three orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bensason, S. Nazarenko, S. Chum, A. Hiltner and E. Baer, Polymer, 38, 3513 (1997).

    Article  CAS  Google Scholar 

  2. G. Hartwig, Polymer Properties at Room and Cryogenic Temperatures, New Yorkm Plenum Press (1994).

  3. K. H. Nitta and A. Tanaka, Polymer, 42, 1219 (2001).

    Article  CAS  Google Scholar 

  4. R. H. Boyd, Polymer, 26, 1123 (1985).

    Article  CAS  Google Scholar 

  5. R. H. Boyd, Polymer, 26, 323 (1985).

    Article  CAS  Google Scholar 

  6. R. Popli, M. Glotin and L. Mandelkern, J. Polym. Sci. Part B: Polym. Phys., 407 (1983).

  7. F. J. Stadler, J. Kaschta and H. Münstedt, Polymer, 46, 10311, DOI: 10.1016/j.polymer.2005.07.099 (2005).

  8. J. Liu, F. Zhang, F. Xie, B. Du, Q. Fu and T. He, Polymer, 42, 5449 (2001).

    Article  CAS  Google Scholar 

  9. F. J. Stadler, T. Takahashi and K. Yonetake, e-Polymers, 40, (2009).

  10. F. J. Stadler, T. Takahashi and K. Yonetake, e-Polymers, 41, (2009).

  11. R. O. Sirotkin and N.W. Brooks, Polymer, 42, 9801 (2001).

    Article  CAS  Google Scholar 

  12. R.G. Matthews, A. P. Unwin, I. M. Ward and G. Capaccio, Journal of Macromolecular Science-Physics, B38, 1–2, 123–143 (1999).

    Google Scholar 

  13. L. Mandelkern, The crystalline state, 2nd Ed., Chap. 4. Washington DC, ACS (1993).

    Google Scholar 

  14. F. J. Stadler and H. Münstedt, J. Rheology, 52, 697, DOI: 10.1122/1.2892039 (2008).

    Article  CAS  Google Scholar 

  15. F. J. Stadler, C. Piel, J. Kaschta, S. Rulhoff, W. Kaminsky and H. Münstedt, Rheologica Acta, 45, 755, DOI: 10.1007/s00397-005- 0042-6 (2006).

    Article  CAS  Google Scholar 

  16. F. J. Stadler, C. Piel, W. Kaminsky and H. Münstedt, Macromolecular Symposia, 236, 209, DOI: 10.1002/masy.200650426 (2006).

    Article  CAS  Google Scholar 

  17. C. Gabriel and H. Münstedt, Rheologica Acta, 41, 232–244 (2002).

    Article  CAS  Google Scholar 

  18. C. Piel, F. J. Stadler, J. Kaschta, S. Rulhoff, H. Münstedt and W. Kaminsky, Macromol. Chem. Phys., 207, 26, DOI: 10.1002/macp.200500321 (2006).

    Article  CAS  Google Scholar 

  19. F. J. Stadler, C. Piel, K. Klimke, J. Kaschta, M. Parkinson, M. Wilhelm, W. Kaminsky and H. Münstedt, Macromolecules, 39, 1474, DOI: 10.1021/ma0514018 (2006).

    Article  CAS  Google Scholar 

  20. W.W. Graessley and J. Roovers, Macromolecules, 12, 959 (1979).

    Article  CAS  Google Scholar 

  21. J. Roovers and W.W. Graessley, Macromolecules, 14, 766 (1981).

    Article  CAS  Google Scholar 

  22. R. Godehardt, S. Rudolph, W. Lebek, S. Goerlitz, R. Adhikari, E. Allert, J. Giesemann and G. H. Michler, J. Macromol. Sci. Phys., B38, 5–6, 817–835 (1999).

    Google Scholar 

  23. R. Adhikari, R. Godehardt, W. Lebek, S. Frangov, G. H. Michler, H. Radusch and F. J. B. Calleja, Polym. Adv. Technol., 16, 2–3, 156–166 (2005).

    Google Scholar 

  24. G. Rojas, E. B. Berda and K. B. Wagener, Polymer, 49, 13–14, 2985–2995, DOI 10.1016/j.polymer.2008.03.029 (2008).

    Article  Google Scholar 

  25. S. Głowinkowski, M. Makrocka-Rydzyk, S. Wanke and S. Jurga, European Polym. J., 38, 961 (2002).

    Article  Google Scholar 

  26. D. Mäder, J. Heinemann, P. Walter and R. Mülhaupt, Macromolecules, 33, 1254 (2000).

    Article  Google Scholar 

  27. P. Starck and B. Löfgren, European Polym. J., 38, 97 (2002).

    Article  CAS  Google Scholar 

  28. J. J. Dechter, D. E. Axelson, A. Dekmezian, M. Glotin and L. Mandelkern, J. Polym. Sci. Part B: Polym. Phys., 20, 641 (1982).

    CAS  Google Scholar 

  29. The interfacial regime is believed to be a rather thin layer on the border between the crystal lamellae and the amorphous regime.

  30. J. A. Resch, F. J. Stadler, J. Kaschta and H. Münstedt, Macromolecules, 42, 5676, DOI: 10.1021/ma9008719 (2009).

    Article  CAS  Google Scholar 

  31. U. Keßner, H. Münstedt, J. Kaschta, F. J. Stadler, C. S. Le Duff and X. Drooghaag, Macromolecules, In press, DOI: 10.1021/ma100705f (2010).

  32. X. Chen, F. J. Stadler, H. Münstedt and R.G. Larson, Journal of Rheology, 54, 393, DOI: 10.1122/1.3305721 (2010).

    Article  CAS  Google Scholar 

  33. F. J. Stadler, J. Kaschta and H. Münstedt, Macromolecules, 41, 1328, DOI: 10.1021/ma702367a (2008).

    Article  CAS  Google Scholar 

  34. F. J. Stadler, A. Nishioka, J. Stange, K. Koyama and H. Münstedt, Rheologica Acta, 46, 1003, DOI: 10.1007/s00397-007-0190-y (2007).

    Article  CAS  Google Scholar 

  35. F. J. Stadler, C. Gabriel and H. Münstedt, Macromol. Chem. Phys., 208, 2449, DOI: 10.1002/macp.200700267 (2007).

    Article  CAS  Google Scholar 

  36. In other words, the material behaves thermorheologically complex, as several processes with different activation energies overlap each other. Thus, no master curve can be constructed, but instead a discussion about the relaxation time dependent activation energy would have to be conducted [30,33]. However, this complicated method does not have to be conducted, as E″ is a clearly separable peak, whose activation energy can, therefore, be determined with relative ease from the peak temperature.

  37. Determined as the difference quotient.

  38. C. Piel, P. Starck, J.V. Seppälä and W. Kaminsky, J. Polym. Sci. Part A: Polym. Chem., 44, 1600 (2006).

    Article  CAS  Google Scholar 

  39. This value was adopted, as it is approximately the mean of the crystallinity of the neighboring samples.

  40. C. Piel, Polymerizations of Ethene and Ethene-co-alpha-Olefin: Investigations on Short- and Long-Chain Branching and Structure Property Relationships. Department of Technical and Macromolecular Chemistry, Vol. Ph. D. Hamburg: University of Hamburg (2005).

    Google Scholar 

  41. C. Piel, K. Scharlach and W. Kaminsky, Macromolecular Symposia, 226, 25 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Additional information

This paper is dedicated to Professor Ki Ju Kim for celebrating his retirement from Division of Chemical Engineering of Chonbuk National University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, F.J. Dynamic-mechanical behavior of polyethylenes and ethene/α-olefin-copolymers: Part II. α- and β-relaxation. Korean J. Chem. Eng. 28, 954–963 (2011). https://doi.org/10.1007/s11814-010-0411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0411-4

Key words

Navigation