Korean Journal of Chemical Engineering

, Volume 28, Issue 2, pp 502–506 | Cite as

Mass transfer and shear rate in baffled surface aerator

  • Bimlesh Kumar
  • Ajey Kumar Patel
  • Achanta Ramakrishna Rao
Invited Review Paper

Abstract

The scale up or scale down of the process variables in a surface aerator requires information about the shear rate prevailing in the system. In fact, the performance of surface aerator depends upon the shear rate. Shear rate affects the mass transfer operation needed by the surface aerator. Theoretical analysis of shear rate suggests a nonlinear behavior with rotational speed of the impeller, which has been shown in the present work. Present work also shows that in a geometrically similar system of baffled surface aerator, shear rate can be used as a governing parameter for scaling up or down the mass transfer phenomena.

Key words

Mass Transfer Rate Mixing Power Number Shear Rate Surface Aeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Li, G. Yu, C. Yang and Z. Mao, Ind. Eng. Chem. Res., 48, 8752 (2009).CrossRefGoogle Scholar
  2. 2.
    G. Prakash and A. Srivastava, Process Biochem., 42, 93 (2007).CrossRefGoogle Scholar
  3. 3.
    C. T. Seamans and H. Wei-Shou, Biotechnol. Technol., 5, 83 (1991).CrossRefGoogle Scholar
  4. 4.
    W. S. Hu and D. I. C. Wang, Mammalian cell culture technology: A review from an engineering perspective. In: Mammalian Cell Technology, Ed. W.G. Thilly, pp. 167–197, Butterworths Publishing Company (1991).Google Scholar
  5. 5.
    W. S. Hu, J. Meier and D. I. C. Wang, Biotechnol. Bioeng., 28, 122 (1981).CrossRefGoogle Scholar
  6. 6.
    A. R. K. Rao and B. Kumar, Korean J. Chem. Eng., 25, 1338 (2008).CrossRefGoogle Scholar
  7. 7.
    D. E. Martens, C.D. Gooijer, C. A. M. van der Velden-de Groot, E. C. Beuvery and J. Tramper, Biotechnol. Bioeng., 41, 429 (1993).CrossRefGoogle Scholar
  8. 8.
    H. J. Silva, T. Cortinas and J. R. Estola, J. Chem. Technol. Biotechnol., 40, 41 (1987).CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, Y. Christi and M. Moo-Young, J. Biotechnol., 43, 33 (1995).CrossRefGoogle Scholar
  10. 10.
    B. Metz, N.W. F. Kossen and J. C. Suijdam, Adv. Biochem. Eng., 11, 103 (1979).Google Scholar
  11. 11.
    S. Nagata, Mixing Principles and applications, John Wiley & Sons, New York, USA (1975).Google Scholar
  12. 12.
    J. A. S. Pérez, E. M. R. Porcel, J. L. C. López, J. M. F. Sevilla and Y. Chisti, Chem Eng J., 124, 1 (2006).CrossRefGoogle Scholar
  13. 13.
    J. H. Rushton, E.W. Costich and H. J. Everett, Chem. Eng. Prog., 46, 395 (1950).Google Scholar
  14. 14.
    J. H. Rushton, E.W. Costich and H. J. Everett, Chem. Eng. Prog., 46, 467 (1950).Google Scholar
  15. 15.
    A. B. Metzner and R. E. Otto, AIChE J., 3, 3 (1957).CrossRefGoogle Scholar
  16. 16.
    A. Campesi, O. C. Marcel, O. H. Carlos and C. B. Alberto, Bioprocess Biosyst Eng., 32, 241 (2009).CrossRefGoogle Scholar
  17. 17.
    H. Cho and Y. Park, Korean J. Chem. Eng., 20, 262 (2003).CrossRefGoogle Scholar
  18. 18.
    K. Myers, J. Fasano and A. Bakker, Gas dispersion using mixed high-efficiency/disc impeller systems, Proceedings of the 8th European Conference on Mixing, 64–72. Institution of Chemical Engineers, London (1994).Google Scholar
  19. 19.
    H. Wu, Chem. Eng. Sci., 50, 280l (1995).Google Scholar
  20. 20.
    A. R. K. Rao and S. Jyothish, Oxygen transfer in circular surface aeration tanks with and without baffles, in International Conference on Industrial Pollution and Control Technologies, Jawaharlal Nehru Technological University (JNTU), Hyderabad, India, 17–19 November (1997).Google Scholar
  21. 21.
    W. K. Lewis and W.G. Whitman, Ind. Eng. Chem. 16, 1215 (1924).CrossRefGoogle Scholar
  22. 22.
    W. E. F. and A. S. C. E. Manual of practice for water pollution control, Aeration a waste water treatment process. Water Environment Federation, Alexandria, Va., and ASCE, New York (1988).Google Scholar
  23. 23.
    K. Liu and K. Neeld, Simulation of Mixing and Heat Transfer in Stirred Tanks with VisiMix® Solutia Inc., Topical Conference on Process Development from Research to Manufacturing: Industrial Mixing and Scale-up, AIChE Annual Meeting, Dallas, TX (1999).Google Scholar
  24. 24.
    B. Kumar and A. R. K. Rao, Bioresour. Technolo., 100, 2886 (2009).CrossRefGoogle Scholar
  25. 25.
    A. C. Badino, M. C. R. Facciotti and W. Schmidell, Biochem Eng. J., 8, 111 (2001).CrossRefGoogle Scholar
  26. 26.
    A. R. K. Rao and B. Kumar, J. Chem. Technol. Biotechnol., 82, 101 (2007).CrossRefGoogle Scholar
  27. 27.
    W. D. Deckwer, K. Nguyen-Tien, A. Schumpe and Y. Serpemen, Biotechnol. Bioeng., 24, 461 (1982).CrossRefGoogle Scholar
  28. 28.
    S. P. Godbole, A. Schumpe, Y. T. Shah and N. L. Carr, AIChE J., 30, 213 (1984).CrossRefGoogle Scholar
  29. 29.
    J. C. Merchuk and S. Ben-zvi, Chem. Eng. Sci., 47, 3517 (1992).CrossRefGoogle Scholar
  30. 30.
    M. Nakanoh and F. Yoshida, Ind. Eng. Chem. Process Des. Dev., 19, 190 (1980).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Bimlesh Kumar
    • 1
  • Ajey Kumar Patel
    • 2
  • Achanta Ramakrishna Rao
    • 2
  1. 1.Department of Civil EngineeringIndian Institute of TechnologyGuwahatiIndia
  2. 2.Department of Civil EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations