Korean Journal of Chemical Engineering

, Volume 27, Issue 5, pp 1412–1418 | Cite as

Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination

  • Long Zhao
  • Jinghong ZhouEmail author
  • Hong Chen
  • Mingguang Zhang
  • Zhijun Sui
  • Xinggui Zhou


Carbon nanofiber (CNFs) supported Ru catalysts for sorbitol hydrogenolysis to ethylene glycol and propylene glycol were prepared by incipient wetness impregnation, calcination and reduction. The effect of calcination on catalyst properties was investigated using thermal gravimetry analysis, temperature-programmed reduction, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N2 physisorption. The results indicated that calcination introduced a great amount of surface oxygen-containing groups (SOCGs) onto CNF surface and induced the phase transformation of Ru species, but slightly changed the texture of Ru/CNFs. The catalytic performance in sorbitol hydrogenolysis showed that Ru/CNFs catalyst calcined at 240 °C presented the highest glycol selectivities and reasonable glycol yields. It was believed that the inhibition and confinement effect of SOCGs around Ru particles as well as the high dispersion of Ru particles was the key factor for the catalytic activity.

Key words

Ru/CNFs Catalyst Calcination Sorbitol Hydrogenolysis Propylene Glycol Ethylene Glycol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.W. Lee, S. S. Nam, S.B. Kim, K.W. Lee and C. S. Choi, Korean J. Chem. Eng., 17, 174 (2000).CrossRefGoogle Scholar
  2. 2.
    Z.M. Wang, J. S. Lee, J.Y. Park, C. Z. Wu and Z. H. Yuan, Korean J. Chem. Eng., 25, 670 (2008).CrossRefGoogle Scholar
  3. 3.
    Z.M. Wang, J. S. Lee, J.Y. Park, C. Z. Wu and Z. H. Yuan, Korean J. Chem. Eng., 24, 1027 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Werpy, G. Petersen, A. Aden, J. Bozell, J. Holladay, J. White, A. Manheim, D. Elliot, L. Lasure, S. Jones, M. Gerber, K. Ibsen, L. Lumberg and S. Kelley, U.S. Department of Energy Report (2004).Google Scholar
  5. 5.
    K.Y. Wang, M.C. Hawley and T. D. Furney, Ind. Eng. Chem. Res., 34, 3766 (1995).CrossRefGoogle Scholar
  6. 6.
    M.A. Andrews and S. A. Klaeren, J. Am. Chem. Soc., 111, 4131 (1989).CrossRefGoogle Scholar
  7. 7.
    L. Zhao, J.H. Zhou, Z. J. Sui and X.G. Zhou, Chem. Eng. Sci., 65, 30 (2009).Google Scholar
  8. 8.
    G. A. Somorjai and R. M. Rioux, Catal. Today, 100, 201 (2005).CrossRefGoogle Scholar
  9. 9.
    V. Mazzieri, F. Coloma-Pascual, A. Arcoya, P. C. L’Argentière and N. S. Fígoli, Appl. Surf. Sci., 210, 222 (2003).CrossRefGoogle Scholar
  10. 10.
    P.G. J. Koopman, A. P.G. Kieboom and H. Van Bekkum, J. Catal., 69, 172 (1981).CrossRefGoogle Scholar
  11. 11.
    A. Infantes-Molina, J. Mérida-Robles, E. Rodríguez-Castellón, J. L.G. Fierro and A. Jiménez-López, Appl. Catal. A, 341, 35 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Cerro-Alarcón, A. Maroto-Valiente, I. Rodríguez-Ramos and A. Guerrero-Ruiz, Carbon, 43, 2711 (2005).CrossRefGoogle Scholar
  13. 13.
    J. H. Zhou, Z. J. Sui, J. Zhu, P. Li, D. Chen, Y. C. Dai and W. K. Yuan, Carbon, 45, 785 (2007).CrossRefGoogle Scholar
  14. 14.
    U. Zielke, K. J. Hüttinger and W. P. Hoffman, Carbon, 34, 983 (1996).CrossRefGoogle Scholar
  15. 15.
    P.V. Lakshminarayanan, H. Toghiani and C.U. Pittman Jr., Carbon, 42, 2433 (2004).CrossRefGoogle Scholar
  16. 16.
    J.X. Pan, J.H. Li, C. Wang and Z.Y. Yang, React. Kinet. Catal. Lett., 90, 233 (2007).CrossRefGoogle Scholar
  17. 17.
    C. Bock, C. Paquet, M. Couillard, G.A. Botton and B. R. Macdougall, React. J. Am. Chem. Soc., 126, 8028 (2004).CrossRefGoogle Scholar
  18. 18.
    M. L. Toebes, F. F. Prinsloo, J.H. Bitter, A. J. vanDillen and K. P. de Jong, J. Catal., 214, 78 (2003).CrossRefGoogle Scholar
  19. 19.
    E. Asedegbega-Nieto, B. Bachiller-Baeza, D.G. Kuvshinov, F. R. García-García, E. Chukanov, G.G. Kuvshinov, A. Guerrero-Ruiz and I. Rodríguez-Ramos, Carbon, 46, 1046 (2008).CrossRefGoogle Scholar
  20. 20.
    M. L. Toebes, Y. H. Zhang, J. Hájek, T. A. Nijhuis, J. H. Bitter, A. J. vanDillen, D.Y. Murzin, D. C. Koningsberger and K. P. de Jong, J. Catal., 226, 215 (2004).CrossRefGoogle Scholar
  21. 21.
    M. L. Toebes, T.A. Nijhuis, J. Hájek, J.H. Bitter, A. J. van Dillen, D.Y. Murzin and K. P. de Jong, Chem. Eng. Sci., 60, 5682 (2005).CrossRefGoogle Scholar
  22. 22.
    T. Tang, C. Yin, N. Xiao, M. Guo and F. Xiao, Catal. Lett., 127, 400 (2009).CrossRefGoogle Scholar
  23. 23.
    C. Amorim and M.A. Keane, J. Chem. Technol. Biotechnol., 83, 662 (2008).CrossRefGoogle Scholar
  24. 24.
    A. J. Plomp, H. Vuori, A.O. Krause, K. P. de Jong and J.H. Bitter, Appl. Catal. A, 351, 9 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Long Zhao
    • 1
  • Jinghong Zhou
    • 2
    Email author
  • Hong Chen
    • 2
  • Mingguang Zhang
    • 2
  • Zhijun Sui
    • 1
  • Xinggui Zhou
    • 1
  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science & TechnologyShanghaiP. R. China
  2. 2.Department of Chemical EngineeringEast China University of Science & TechnologyShanghaiP. R. China

Personalised recommendations