Skip to main content
Log in

Mesoporous silica synthesis in sub- and supercritical carbon dioxide

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mesoporous silicas were synthesized from sodium silicate (Na2Si3O7) and tetraethylorthosilicate (TEOS) with Pluronic F127 (polyethylene oxide-polypropylene oxide-polyethylene oxide, EO106PO70EO106) triblock copolymer using sub- and supercritical carbon dioxide (SubCO2 and SCO2) respectively, as solvents. Templates were removed using liquid carbon dioxide (LCO2) and SCO2. The most efficient template removal was achieved by LCO2 − 92.7% (w/w), followed by LCO2 with ethanol entrainer − 85.6% (w/w), and by methanol − 78.8% (w/w). The best efficiency of template removal by SCO2 was 50.7%. Values of specific surface areas, ABET, were increased by 10% with the increase of an ageing time from 6 to 24 hours for Na2Si3O7-based silicas at aqueous synthesis conditions, whereas the use of SCO2 reduced this value by 19.4%. For TEOS-based silicas synthesized using SCO2, A BET values increased by 3.8 times. Application of SCO2 for synthesis of TEOS-based silicas resulted in higher mesopore volumes of 0.719 and 1.241 mL/g with an average mesopore width varying from 3.4 to 3.9 nm. Although Na2Si3O7-based silicas have almost similar mesopore width range, their mesopore volumes were 7 times less than those for TEOS-based silicas. Formation of mesopores in Na2Si3O7- and TEOS-based silicas was at the expense of micropores when synthesized in SCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. C. Palmqvist, Curr. Opin. Colloid Interface Sci., 8, 145 (2003).

    Article  CAS  Google Scholar 

  2. D. Zhao, J. Feng, B. F. Chmelk and G.D. Stucky, J. American Chem. Soc., 120, 6024 (1998).

    Article  CAS  Google Scholar 

  3. J. P. Hanrahan, M. P. Copley, R. Spalding Trevor, J.D. Holmes, D. C. Steytler, H. Amenitsch, M. Steinhart and M.A. Morris, J. Non-Cryst. Solids, 353, 4823 (2007).

    Article  CAS  Google Scholar 

  4. R. F. Fulvio, S. Pikus and M. Jaroniec, JMCh, 15, 5049 (2005).

    CAS  Google Scholar 

  5. R.V. Grieken, G. Calleja, G.D. Stucky, J.A. Melero, R.A. Garcia and J. Iglesias, Langmuir, 19, 3966 (2003).

    Article  Google Scholar 

  6. Q. S. Huo, J. L. Feng, F. Schuth and G.D. Stucky, Chemistry of Materials, 9, 14 (1997).

    Article  CAS  Google Scholar 

  7. C.-L. Lin, Y.-S. Pang, M.-C. Chao, B.-C. Chen, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, JPCS, 69, 415 (2008).

    CAS  Google Scholar 

  8. M.-C. Chao, C.-H. Chang, H.-P. Lin, C.-Y. Tang and C.-Y. Lin, J. Mater. Sci., 44(24), 6453 (2009).

    Article  CAS  Google Scholar 

  9. Y. Wan and D. Zhao, Chem. Rev., 107, 2821 (2007).

    Article  CAS  Google Scholar 

  10. T.-W. Kim, R. Ryoo, M. Kruk, K. P. Gierszal, M. Jaroniec, S. Kamiya and O. Terasaki, J. Phys. Chem. B, 108, 11480 (2004).

    Article  CAS  Google Scholar 

  11. A. I. Cooper, Advanced Materials, 13, 1111 (2001).

    Article  CAS  Google Scholar 

  12. J. P. Hanrahan, M. P. Copley, K.M. Ryan, T. R. Spalding, M. A. Morris and J. D. Holmes, Chem. Mater., 16, 424 (2004).

    Article  CAS  Google Scholar 

  13. M.A. McHugh and V. J. Krukonis, Supercritical fluid extraction (principles and practice); chemical reaction in supercritical fluids, 2nd edition, Butterworth-Heinemann, Boston (1994).

    Google Scholar 

  14. H. Wakayama, Y. Goto and Y. Fukushima, Physical Chemistry Chemical Physics, 5, 3784 (2003).

    Article  CAS  Google Scholar 

  15. T. Tsoncheva, J. Rosenholm, M. Linden, L. Ivanova and C. Minchev, Appl. Catal. A: Gen., 318, 234 (2007).

    Article  CAS  Google Scholar 

  16. S. Kawi and M.W. Lai, AIChE J., 48, 1572 (2002).

    Article  CAS  Google Scholar 

  17. A. Badalyan, P. Pendleton and H. Wu, Rev. Sci. Instrum., 72, 3038 (2001).

    Article  CAS  Google Scholar 

  18. A. Badalyan and P. Pendleton, Langmuir, 19, 7919 (2003).

    Article  CAS  Google Scholar 

  19. S. J. Gregg and K. S.W. Sing, Adsorption, surface area and porosity, Academic Press, London (1982).

    Google Scholar 

  20. A. Badalyan and P. Pendleton, J. Colloid Interface Sci., 326, 1 (2008).

    Article  CAS  Google Scholar 

  21. F. Rouquerol, J. Rouquerol and K. S.W. Sing, Adsorption by powders and porous solids, Academic Press, Sydney (1999).

    Google Scholar 

  22. IUPAC, Pure Appl. Chem., 66, 1739 (1994).

    Article  Google Scholar 

  23. A. Saito and H. C. Foley, AIChE J., 37, 429 (1991).

    Article  CAS  Google Scholar 

  24. A. C. Lasaga and R. T. Cygan, AmMin, 67, 328 (1982).

    CAS  Google Scholar 

  25. H.-Y. Kim, J.O. Sofo, D. Velegol, Cole, Milton W. and G. Mukhopadhyay, PhRvA, 72, 053201 (2005).

    Google Scholar 

  26. CRC handbook of chemistry and physics, 85th Edition, CRC Press (2004).

  27. E. P. Barrett, L.G. Joyner and P. P. Halenda, J. American Chem. Soc., 73, 373 (1951).

    Article  CAS  Google Scholar 

  28. R. Span and W. Wagner, JPCRD, 25, 1509 (1996).

    CAS  Google Scholar 

  29. Y. Sato, T. Takikawa, M. Yamane, S. Takishima and H. Masuoka, Fluid Phase Equilib., 194–197, 847 (2002).

    Article  Google Scholar 

  30. IUPAC, Pure Appl. Chem., 57, 603 (1985).

    Article  Google Scholar 

  31. P. J. Kooyman, M. J. Verhoef and E. Prouzet, Stud. Surf. Sci. Catal., 129 (Nanoporous Materials II, Proceedings of the Conference on Access in Nanoporous Materials, 2000), 535 (2000).

    Article  CAS  Google Scholar 

  32. R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk and M. Jaroniec, J. Phys. Chem. B., 104, 11465 (2000).

    Article  CAS  Google Scholar 

  33. O.C. Gobin, Y. Wan, D. Zhao, F. Kleitz and S. Kaliaguine, J. Phys. Chem. C, 111, 3053 (2007).

    Article  CAS  Google Scholar 

  34. Y. Arai, T. Sako and Y. Takebayashi, Supercritical fluids: Transport properties of supercritical fluids, Springer-Verlag, New York (2001).

    Google Scholar 

  35. B. S. Chun and G. T. Wilkinson, Ind. Eng. Chem. Res., 34, 4371 (1995).

    Article  CAS  Google Scholar 

  36. A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi and F. Fajula, New Journal of Chemistry, 27, 73 (2003).

    Article  CAS  Google Scholar 

  37. S.A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science, 269, 1243 (1995).

    Article  Google Scholar 

  38. S.-S. Kim, T.R. Pauly and T. J. Pinnavaia, ChCom, 10, 835 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Pendleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, BS., Pendleton, P., Badalyan, A. et al. Mesoporous silica synthesis in sub- and supercritical carbon dioxide. Korean J. Chem. Eng. 27, 983–990 (2010). https://doi.org/10.1007/s11814-010-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0130-x

Key words

Navigation