Skip to main content
Log in

Hybrid supercapacitor based on poly(aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A hybrid asymmetrical super capacitor has been fabricated based on p-doped poly(aniline-co-m-anilicacid) and activated carbon coated on SS electrodes. The characterization of material, electrode and performance of the super capacitor has been studied by FTIR, Cyclic Voltammetry, TGA/DTA, AC Impedance spectroscopy, and galvanostatic charge-discharge tests. The super capacitor showed a maximum specific capacitance of 102 F/g at a scan rate of 10 mV/s. The normalized active-reactive power behavior of the capacitor has been determined. The time constant calculated for the super capacitor is 6 milliseconds, indicating the suitability of the system for efficient use at low frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Croce, S. Passerini and B. Scrosati, J. Electrochem. Soc., 141, 1405 (1994).

    Article  CAS  Google Scholar 

  2. J. Osaka, S. Komaba, N. Fujihana, J. Momma and N. T. Laneco, J. Electrochem. Soc., 144, 742 (1997).

    Article  CAS  Google Scholar 

  3. G. P. Kitteson, H. S. White and M. S. Wrighton, J. Am. Chem. Soc., 106, 7389 (1984).

    Article  Google Scholar 

  4. B. R. Mattes, H. Wang, D. Yang, Y. T. Zhu, W. R. Blamenthal and M. F. Hundley, Synth. Met., 45, 84 (1997).

    Google Scholar 

  5. A. Rudge, J. Davey, J. Raistrick and S. Gottesteid, J. Power Sources, 47, 89 (1994).

    Article  CAS  Google Scholar 

  6. J. Libent, J.W. Bredas and A. J. Esptein, Phys. Rev. B., 51, 5711 (1995).

    Article  Google Scholar 

  7. M.Y. Hua, G.W. Hwang, Y.H. Chuang, S.A. Chen and R.Y. Tsai, Macromolecules, 33, 6235 (2000).

    Article  CAS  Google Scholar 

  8. A.A. Karyakin, A.K. Strakhova and A.K. Yatsimirsky, J. Electroanal. Chem., 259, 371 (1994).

    Google Scholar 

  9. W. Shenglong, W. Fosong and G. Xiabhui, Synth. Met., 16, 99 (1998).

    Article  Google Scholar 

  10. M. Leclerc, J. Guay and L. H. Dao, J. Electroanal. Chem., 21, 251 (1988).

    Google Scholar 

  11. D. Macinnes and B. L. Funt, Synth. Met., 25, 235 (1998).

    Article  Google Scholar 

  12. W.A. T. Gazotti, J. Matecio and M.A. Depaoli, Electrochim. Acta, 43, 457 (1998).

    Article  CAS  Google Scholar 

  13. X.H. Wang, L. X. Wang, X. P. Jing and F. S. Wang, Synth. Met., 69, 335 (1995).

    Article  Google Scholar 

  14. M. Ranger and M. Leclerc, Synth. Met., 84, 85 (1997).

    Article  CAS  Google Scholar 

  15. M.A. Christopher and C. Brett Thiemann, J. Electroanal. Chem., 538, 215 (2002).

    Article  Google Scholar 

  16. K. Ryu, K. Kim, N. Park, Y. Park and S. Chang, J. Power Sources, 103, 305 (2002).

    Article  CAS  Google Scholar 

  17. J. H. Park and O. Park, J. Power Sources, 111, 185 (2002).

    Article  CAS  Google Scholar 

  18. D.W. Hatchett, N. Jsowicz and J. Janata, J. Electrochem. Soc., 146, 4535 (1999).

    Article  CAS  Google Scholar 

  19. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S.H. Chang, J. Power Sources, 103, 305 (2002).

    Article  CAS  Google Scholar 

  20. A. Clemete, S. Panero, E. Spila and B. Scrosati, Solid State Ionics, 85, 273 (1996).

    Article  Google Scholar 

  21. C. Arbizzani, M. Mastragostino and F. Soavi, J. Power Sources, 100, 164 (2001).

    Article  CAS  Google Scholar 

  22. K. S. Ryu, Y.-G. Lee, Y.-S. Hong, Y. J. Park, X. Wu, K.M. Kim, M.G. Kang, N.-G. Park and S.H. Chang, Electrochim. Acta, 50, 843 (2004).

    Article  CAS  Google Scholar 

  23. K. I. Seo and I. J. Chung, Polym., 41, 4491 (2004).

    Article  Google Scholar 

  24. F. Tranvan, S. Garreau, G. Louarn, G. Froyer and C. Chevrot, J. Mater Chem., 11, 1378 (2001).

    Article  CAS  Google Scholar 

  25. D.W. Hatchett, M. Jsowicz and J. Janata, J. Electrochem. Soc., 146(12), 4535 (1999).

    Article  CAS  Google Scholar 

  26. Y. Wei and K. F. Hsueh, J. Polym. Sci., 27, 4351 (1989).

    CAS  Google Scholar 

  27. R. Ansari, W. E. Price and G.G. Wallace, React. Funct. Polym., 56, 141 (2003).

    Article  Google Scholar 

  28. T. Hagiwara, M. Yamaura and K. Iwata, Synth. Met., 25, 243 (1988).

    Article  CAS  Google Scholar 

  29. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic Publishers, Plenum press, New York (1999).

    Google Scholar 

  30. D. Qu and H. Shi, J. Power Sources, 74, 99 (1998).

    Article  CAS  Google Scholar 

  31. H.K. Song, Y.H. Jung, K.H. Lee and L.H. Dao, Electrochim. Acta, 44, 3513 (1999).

    Article  CAS  Google Scholar 

  32. H. Keiser, K. D. Beccu and M. A. Gutjahr, Electrochim Acta, 12, 539 (1976).

    Article  Google Scholar 

  33. P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 150(3), A292 (2003).

    Article  CAS  Google Scholar 

  34. J. P. Zheng, J. Huang and T.R. Jow, J. Electrochem. Soc., 144(6), 2026 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthu Selvakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selvakumar, M., Pitchumani, S. Hybrid supercapacitor based on poly(aniline-co-m-anilicacid) and activated carbon in non-aqueous electrolyte. Korean J. Chem. Eng. 27, 977–982 (2010). https://doi.org/10.1007/s11814-010-0120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0120-z

Key words

Navigation