Skip to main content

Advertisement

Log in

Thermogravimetric analysis of longan seed biomass with a two-parallel reactions model

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The kinetic analysis of pyrolysis process of longan seed was performed in a thermogravimetric analyzer. All experimental runs were carried out by using an initial sample mass of 15 mg and final temperature of 650 °C under the inert atmosphere of nitrogen. Particle sizes in the range from 0.05–2.1 mm and the heating rates from 5–100 °C/min were employed to investigate their effects on the thermogram and the kinetic parameters. The TG curves generally showed sigmoid shape and displayed one major peak in DTG curve. The main devolatilization of longan seed occurred over the temperature range of 210–330 °C. It was found that heat transfer resistance in a particle could be reduced either by decreasing the size of particle or increasing the heating rate. The thermal decomposition of longan seed could be well described by the two-parallel reactions kinetic model. This analysis of reaction kinetic gave the values of activation energy for the decomposition of the two fractions in the model corresponding closely to those of hemicellulose and lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S-S. Kim, F.A. Agblevor and J. Lim, J. Ind. Eng. Chem., 15, 247 (2009).

    CAS  Google Scholar 

  2. H. J. Park, Y.-K. Park, J.-I. Dong, J.-S. Kim, J.-K. Jeon, S.-S. Kim, J. Kim, B. Song, J. Park and K.-J. Lee, Fuel Process. Technol., 90, 186 (2009).

    Article  CAS  Google Scholar 

  3. H. J. Park, J.-I. Dong, J.-K. Jeon, Y.-K. Park, K.-S. Yoo, S.-S. Kim, J. Kim and S. Kim, Chem. Eng. J., 143, 124 (2008).

    Article  CAS  Google Scholar 

  4. Y.-H. Park, J. Kim, S.-S. Kim and Y.-K. Park, Bioresour. Technol., 100, 400 (2009).

    Article  CAS  Google Scholar 

  5. H. J. Park, J.-I. Dong, J.-K. Jeon, K.-S. Yoo, J.-H. Yim, J. M. Sohn and Y.-K. Park, J. Ind. Eng. Chem., 13, 182 (2007).

    CAS  Google Scholar 

  6. H. I. Lee, H. J. Park, Y.-K. Park, J.Y. Hur, J.-K. Jeon and J.M. Kim, Catal. Today, 132, 68 (2008).

    Article  CAS  Google Scholar 

  7. H. J. Park, J.-K. Jeon, J.M. Kim, H. I. Lee, J.-H. Yim, J. Park and Y.-K. Park, J. Nanosci. Nanotechnol., 8, 5439 (2008).

    Article  CAS  Google Scholar 

  8. H. B. Goyal, D. Seal and R. C. Saxena, Renewable Sustainable Energy Rev., 12, 504 (2008).

    Article  CAS  Google Scholar 

  9. S. Kim and Y. Eom, Korean J. Chem. Eng., 23, 409 (2006).

    Article  CAS  Google Scholar 

  10. R. R. Baker, Thermochim. Acta, 23, 201 (1978).

    Article  CAS  Google Scholar 

  11. J.A. Conesa, A. Marcilla, J. A. Caballero and R. Font, J. Anal. Appl. Pyrol., 58–59, 617 (2001).

    Article  Google Scholar 

  12. J.A. Caballero, J.A. Conesa, R. Font and A. Marcilla, J. Anal. Appl. Pyrol., 42, 159 (1997).

    Article  CAS  Google Scholar 

  13. H. Teng, H.-C. Lin and J.-A. Ho, Ind. Eng. Chem. Res., 36, 3947 (1997).

    Google Scholar 

  14. J. Guo and A. C. Lua, Biomass Bioenergy, 20, 223 (2001).

    Article  CAS  Google Scholar 

  15. R. Font, A. Marcilla, E. Verdu and J. Devesa, J. Anal. Appl. Pyrol., 21, 249 (1991).

    Article  CAS  Google Scholar 

  16. S. Junpirom, D.D. Do, C. Tangsathitkulchai and M. Tangsathitkulchai, Carbon, 43, 1936 (2005).

    Article  CAS  Google Scholar 

  17. P. Luangkiattikhun, C. Tangsathitkulchai and M. Tangsathitkulchai, Bioresour. Technol., 99, 986 (2006).

    Article  Google Scholar 

  18. K. Gergova, N. Petrov and S. Eser, Carbon, 32, 693 (1994).

    Article  CAS  Google Scholar 

  19. T. Fisher, M. Hajaligol, B. Waymack and D. Kellogg, J. Anal. Appl. Pyrol., 62, 331 (2002).

    Article  CAS  Google Scholar 

  20. H. Haykiri-Acma, J. Anal. Appl. Pyrol., 75, 211 (2006).

    Article  CAS  Google Scholar 

  21. J. F. Gonzalez, J.M. Encinar, J. L. Canito, E. Sabio and M. Chacon, J. Anal. Appl. Pyrol., 67, 165 (2003).

    Article  CAS  Google Scholar 

  22. A. J. Tsamba, W. Yang and W. Blasia, Fuel Process. Technol., 87, 523 (2006).

    Article  CAS  Google Scholar 

  23. G. Varhegyi, M. J. Antal, E. Jakab and P. Szabo, J. Anal. Appl. Pyrol., 42, 73 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaiyot Tangsathitkulchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junpirom, S., Tangsathitkulchai, C. & Tangsathitkulchai, M. Thermogravimetric analysis of longan seed biomass with a two-parallel reactions model. Korean J. Chem. Eng. 27, 791–801 (2010). https://doi.org/10.1007/s11814-010-0118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0118-6

Key words

Navigation