Skip to main content
Log in

Sensitivity of spinning process with flow-induced crystallization kinetics using frequency response method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The sensitivity of the low- and high-speed spinning processes incorporated with flow-induced crystallization has been investigated using frequency response method, based on process conditions employed in Lee et al. [1] and Shin et al. [2,3]. Crystallinity occurring in the spinline makes the spinning system less sensitive to any disturbances when it has not reached its maximum onto the spinline in comparison with the spinning case without crystallization. Whereas, the maximum crystallinity increases the system sensitivity to disturbances, interestingly exhibiting high amplitude value of the spinline area at the take-up in low frequency regime. It also turns out that neck-like deformation in the spinline under the high-speed spinning conditions plays a key role in determining the sensitivity of the spinning system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Lee, D.M. Shin, H.W. Jung and J.C. Hyun, J. Non-Newtonian Fluid Mech., 130, 110 (2005).

    Article  CAS  Google Scholar 

  2. D. M. Shin, J. S. Lee, H.W. Jung and J. C. Hyun, Kor. Aust. Rheol. J., 17, 63 (2005).

    Google Scholar 

  3. D. M. Shin, J. S. Lee, H.W. Jung and J. C. Hyun, Rheol. Acta, 45,575 (2006).

    Article  CAS  Google Scholar 

  4. D. Gelder, Ind. Eng. Chem. Fundam., 10, 534 (1971).

    Article  CAS  Google Scholar 

  5. R. J. Fisher and M.M. Denn, AIChE J., 22, 236 (1976).

    Article  CAS  Google Scholar 

  6. M.M. Denn, Modeling for Process Control in Advances in Control and Dynamic Systems, XV, C. T. Leondes, Ed., Academic Press (1979).

  7. S. Kase and M. Araki, J. Appl. Polym. Sci., 27, 4439 (1982).

    Article  CAS  Google Scholar 

  8. B. M. Devereux and M. M. Denn, Ind. Eng. Chem. Fundam., 33,2384 (1994).

    CAS  Google Scholar 

  9. W.W. Schultz, A. Zebib, S.H. Davis and Y. Lee, J. Fluid Mech., 149, 455 (1984).

    Article  Google Scholar 

  10. A.K. Doufas and A. J. McHugh, J. Non-Newtonian Fluid Mech., 92, 81 (2000).

    Article  CAS  Google Scholar 

  11. A.K. Doufas, A. J. McHugh and C. Miller, J. Non-Newtonian Fluid Mech., 92, 27 (2000).

    Article  CAS  Google Scholar 

  12. Y. L. Joo, J. Sun, M.D. Smith, R. C. Armstrong, R.A. Brown and R. A. Ross, J. Non-Newtonian Fluid Mech., 102, 37 (2002).

    Article  CAS  Google Scholar 

  13. H.W. Jung, H.-S. Song and J.C. Hyun, J. Non-Newtonian Fluid Mech., 87(2–3), 165 (1999).

    Article  CAS  Google Scholar 

  14. H.W. Jung and J.C. Hyun, Korean J. Chem. Eng., 16(3), 325 (1999).

    Article  CAS  Google Scholar 

  15. H.W. Jung, H.-S. Song and J. C. Hyun, AIChE J., 46, 2106 (2000).

    Article  CAS  Google Scholar 

  16. J. S. Lee, H.W. Jung, S.H. Kim and J. C. Hyun, J. Non-Newtonian Fluid Mech., 99, 159 (2001).

    Article  CAS  Google Scholar 

  17. H.W. Jung, J. S. Lee and J. C. Hyun, Kor. Aust. Rheol. J., 14, 57 (2002).

    Google Scholar 

  18. H.W. Jung, J. S. Lee, L. E. Scriven and J. C. Hyun, Korean J. Chem. Eng., 21, 20 (2004).

    Article  CAS  Google Scholar 

  19. J. S. Lee, D. M. Shin, H.W. Jung, J. C. Hyun and Y.U. Jeong, J. Soc. Rheol. Japan, 33, 2125 (2005).

    Google Scholar 

  20. J.H. Yun, D.M. Shin, J. S. Lee, H.W. Jung and J. C. Hyun, J. Soc. Rheol. Japan, 36, 133 (2008).

    Article  CAS  Google Scholar 

  21. W.H. Kohler and A. J. McHugh, Chem. Eng. Sci., 62, 2690 (2007).

    Article  CAS  Google Scholar 

  22. W.H. Kohler and A. J. McHugh, Polym. Eng. Sci., 48, 88 (2008).

    Article  CAS  Google Scholar 

  23. A. Ziabicki, Fundamentals of fiber formation, John Wiley and Sons (1976).

  24. A. Ziabicki and H. Kawai, High-speed fiber spinning: Science and engineering aspect, John Wiley and Sons (1985).

  25. N. Phan-Thien and R. I. Tanner, J. Non-Newtonian Fluid Mech., 2,353 (1977).

    Article  Google Scholar 

  26. I. A. Muslet and M.R. Kamal, J. Rheol., 48, 525 (2004).

    Article  CAS  Google Scholar 

  27. R. Kolb, S. Seifert, N. Stribeck and H.G. Zachmann, Polymer, 41, 1497 (2000).

    Article  CAS  Google Scholar 

  28. H. Haberkorn, K. Hahn, H. Breuer, H.D. Dorrer and P. Matthies, J. Appl. Polym. Sci., 47, 1555 (1993).

    Article  Google Scholar 

  29. W. Takarada, K. Kazama, H. Ito and T. Kikutani, Intern. Polym. Proc., 19, 380 (2004).

    CAS  Google Scholar 

  30. J.C. Friedly, Dynamic behavior of processes, Prentice-Hall, New Jersey (1972).

    Google Scholar 

  31. W. Minoshima, J. L. White and J. E. Spruiell, Polym. Eng. Sci., 20, 1166 (1980).

    Article  CAS  Google Scholar 

  32. R. Zheng and P. K. Kennedy, J. Rheol., 48, 823 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Wook Jung.

Additional information

This paper is dedicated to Professor Jae Chun Hyun for celebrating his retirement from Department of Chemical and Biological Engineering of Korea University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J.H., Shin, D.M., Lee, J.S. et al. Sensitivity of spinning process with flow-induced crystallization kinetics using frequency response method. Korean J. Chem. Eng. 27, 37–44 (2010). https://doi.org/10.1007/s11814-010-0102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0102-1

Key words

Navigation