Korean Journal of Chemical Engineering

, Volume 27, Issue 2, pp 658–665 | Cite as

Rheological property and curing behavior of poly(amide-co-imide)/multi-walled carbon nanotube composites

  • Seung Hwan Lee
  • Sheong Hyun Choi
  • Jin Il Choi
  • Jae Rock Lee
  • Jae Ryoun Youn


Poly(amide-co-imide) (PAI)/multi-walled carbon nanotube (MWCNTs) composites were prepared by using solution mixing with ultrasonication excitation in order to investigate effects of MWCNTs on rheological properties and thermal curing behavior. Steady shear viscosity of the composite showed bell shaped curves with three characteristic patterns: shear thickening, shear thinning, and Newtonian plateau behavior. Both storage modulus and complex viscosity were increased due to higher molecular interaction than that of the pure PAI resin. Especially, hydrogen peroxide treated MWCNT/PAI composites had the highest storage modulus and complex viscosity. Glass transition temperature of the PAI/MWCNT composite was increased with increasing MWCNT content and thermal curing time since the mobility of PAI molecules was reduced as more constraints were generated in PAI molecular chains. It was found that thermal curing conditions of PAI/MWCNT composites are determined by considering effects of weight fraction and surface modification of MWCNTs on internal structure and thermal properties.

Key words

Poly(amide-co-imide) MWCNTs Rheology Glass Transition Temperature Thermal Curing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Margolis, Engineering plastics handbook, McGraw-Hill, New York (2006).Google Scholar
  2. 2.
    S. Mehdipour-Ataei and M. Hatami, Eur. Polym. J., 41, 2010 (2005).CrossRefGoogle Scholar
  3. 3.
    G. P. Robertson, M.D. Guiver, M. Yoshikawa and S. Brownstein, Polymer, 45, 1111 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Wang, S. H. Goh and T. S. Chung, Polymer, 48, 2901 (2007).CrossRefGoogle Scholar
  5. 5.
    D. J. Liaw, F. C. Chang, J.H. Liu, K. L. Wang, K. Faghihi and S.H. Huang, Polym. Degrad. Stab., 92, 323 (2007).CrossRefGoogle Scholar
  6. 6.
    P. Liu, Eur. Polym. J., 41, 2693 (2005).CrossRefGoogle Scholar
  7. 7.
    Y. T. Sung, M. S. Han, K.H. Song, J.W. Jung, H. S. Lee, C.K. Kum, J. Joo and W. N. Kim, Polymer, 47, 4434 (2007).CrossRefGoogle Scholar
  8. 8.
    V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A.M. Galibert, B. Soula and E. Flahaut, J. Mater. Chem., 19, 2729 (2009).CrossRefGoogle Scholar
  9. 9.
    S.H. Lee, M.W. Kim, S.H. Kim and J. R. Youn, Eur. Polym. J., 44, 1620 (2008).CrossRefGoogle Scholar
  10. 10.
    J.A. Kim, D.G. Seong, T. J. Kang and J. R. Youn, Carbon, 44, 1898 (2006).CrossRefGoogle Scholar
  11. 11.
    C. Gao, H. He, L. Zhou, X. Zheng and Y. Zhang, Chem. Mater., 21, 360 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Yang, M. Gu, Y. Guo, X. Pan and G. Mu, Carbon, 47, 1723 (2009).CrossRefGoogle Scholar
  13. 13.
    S. H. Lee, E. Cho, S. H. Jeon and J. R. Youn, Carbon, 45, 2810 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Kang, Korean J. Chem. Eng., 25, 933 (2008).CrossRefGoogle Scholar
  15. 15.
    C. P. Yang, R. S. Chen and C. S. Wei, Eur. Polym. J., 38, 1721 (2002).CrossRefGoogle Scholar
  16. 16.
    H. Behniafar and S. Haghighat, Eur. Polym. J., 42, 3236 (2006).CrossRefGoogle Scholar
  17. 17.
    A. Ranade, N.A. D’souza and B. Gnade, Polymer, 43, 3759 (2002).CrossRefGoogle Scholar
  18. 18.
    L. Shi, Y. Zhao, X. Zhang, H. Su and T. Tan, Korean J. Chem. Eng., 25, 1434 (2009).CrossRefGoogle Scholar
  19. 19.
    P. R. Buch, D. J. Mohan and A.V. R. Reddy, Polym. Int., 55, 391 (2006).CrossRefGoogle Scholar
  20. 20.
    D. Ratna, T. Abraham and J. Karger-Kocsis, Macromol. Chem. Phys., 209, 723 (2008).CrossRefGoogle Scholar
  21. 21.
    T.N. Abraham, D. Ratna, S. Siengchin and J. Karger-Kocsis, J. Appl. Polym. Sci., 110, 2094 (2008).CrossRefGoogle Scholar
  22. 22.
    J. R. Vail, D. L. Burris and W.G. Sawyer, Wear, 267, 619 (2009).CrossRefGoogle Scholar
  23. 23.
    Solvay Advanced Polymers Data Sheet. http://www.solvayadvancedpolymers.com.
  24. 24.
    Carbon nano-material technology data sheet. http://www.carbonnano.co.kr/english/english.htm.
  25. 25.
    R.G. Larson, The structure and rheology of complex fluids, Oxford University Press, New York (1999).Google Scholar
  26. 26.
    J.M. Dealy and K. F. Wissbrun, Melt rheology and its role in plastics processing, Van Nostrand Reinhold, New York (1990).CrossRefGoogle Scholar
  27. 27.
    S.H. Lee, J. H. Kim, S. H. Choi, S.Y. Kim, K.W. Kim and J. R. Youn, Polym. Int., 58, 354 (2009).CrossRefGoogle Scholar
  28. 28.
    N. Peng, T. S. Chung and J. Y. Lai, J. Membrane. Sci., 326, 608 (2009).CrossRefGoogle Scholar
  29. 29.
    C.B. Holmes, M. E. Cates, M. Fuchs and P. Sollich, J. Rheol., 49, 237 (2005).CrossRefGoogle Scholar
  30. 30.
    A.V. Shenoy, Rheology of filled polymer systems, Kluwer Academic Publisher, Dordrecht (1999).Google Scholar
  31. 31.
    R.K. Gupta, Polymer and composite rheology, Marcel Dekker, New York (2000).Google Scholar
  32. 32.
    E. Brown and H. M. Jaeger, Phys. Rev. Lett., 103, 086001 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Olejnik, P. Liu, P. Slobodian, M. Zatloukal and P. Saha, AIP Conf. Proc., 1152, 204 (2009).CrossRefGoogle Scholar
  34. 34.
    D.R. Salem, Structure formation in polymeric fibers, Hanser Publishers, Munich (2001).Google Scholar
  35. 35.
    P.W. Morgan, Macromolecules, 10, 1381 (1977).CrossRefGoogle Scholar
  36. 36.
    E.W. Choe and S. N. Kim, Macromolecules, 14, 920 (1981).CrossRefGoogle Scholar
  37. 37.
    S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, Y. J. Jeong and S. H. Hong, Carbon, 46, 482 (2008).CrossRefGoogle Scholar
  38. 38.
    K.Q. Xiao, L. C. Zhang and I. Zarudi, Compos. Sci. Technol., 67, 177 (2007).CrossRefGoogle Scholar
  39. 39.
    P. Pötschke, T.D. Fornes and D.R. Paul, Polymer, 43, 3247 (2002).CrossRefGoogle Scholar
  40. 40.
    L. Chen, X. J. Pang and Z. L. Yu, Mater. Sci. Eng., 457, 287 (2007).CrossRefGoogle Scholar
  41. 41.
    A. T. Seyhan, F.H. Gojny, M. Tano lu and K. Schulte, Eur. Polym. J., 43, 2836 (2007).CrossRefGoogle Scholar
  42. 42.
    Z. Fan and S. G. Advani, J. Rheol., 51, 585 (2007).CrossRefGoogle Scholar
  43. 43.
    S.H. Lee, E. Cho and J.R. Youn, J. Appl. Polym. Sci., 103, 3506 (2007).CrossRefGoogle Scholar
  44. 44.
    H. Yang, B. Li, K. Wang, T. Sun, X. Wang, Q. Zhang, Q. Fu, X. Dong and C. C. Han, Eur. Polym. J., 44, 113 (2008).CrossRefGoogle Scholar
  45. 45.
    S.H. Lee, J. S. Park, B.K. Lim and S. O. Kim, J. Appl. Polym. Sci., 110, 2345 (2008).CrossRefGoogle Scholar
  46. 46.
    T. Hatakeyama and F.X. Quinn, Thermal analysis: Fundamentals and applications to polymer science, John Wiley & Sons, New York (1999).Google Scholar
  47. 47.
    M.K. Ghosh and K. L. Mittal, Polyimide: Fundamentals and applications, Marcel Dekker, New York (1996).Google Scholar
  48. 48.
    K. C. Chan and T. C. Chang, Polym. J., 30, 897 (1998).CrossRefGoogle Scholar
  49. 49.
    H. Cai, F. Yan and Q. Xue, Mater. Sci. Eng. A, 364, 94 (2004).CrossRefGoogle Scholar
  50. 50.
    K. P. Menard, Dynamic mechanical analysis: A practical introduction, CRC Press, Boca Raton, FL (1999).CrossRefGoogle Scholar
  51. 51.
    K. S. Kang, S. I. Lee, T. J. Lee, R. Narayan and B.Y. Shin, Korean J. Chem. Eng., 25, 599 (2008).CrossRefGoogle Scholar
  52. 52.
    Q. P. Feng, X. M. Xie, Y. T. Liu, W. Zhao and Y. F. Gao, J. Appl. Polym. Sci., 106, 2413 (2007).CrossRefGoogle Scholar
  53. 53.
    B. Vigolo, V. Mamane, F. Valsaque, T.N.H. Le, J. Thabit, J. Ghanbaja, L. Aranda, Y. Fort and E. McRaea, Carbon, 47, 411 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Seung Hwan Lee
    • 1
  • Sheong Hyun Choi
    • 2
  • Jin Il Choi
    • 3
  • Jae Rock Lee
    • 3
  • Jae Ryoun Youn
    • 1
  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.The Technology Commercialization CenterHyosung CorporationGyeonggi-doKorea
  3. 3.Advanced Materials DivisionKorea Research Institute of Chemical TechnologyYuseong, DaejeonKorea

Personalised recommendations