Skip to main content
Log in

An empirical near-critical correction for a quasi-chemical nonrandom lattice fluid

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a simple empirical correction to improve the near-critical volumetric behavior of a classical equation of state (EOS) which overpredicts the critical point. The focus is on the alternative representation of long-range density fluctuation, an effect neglected in classical EOS, in terms of molecular clustering. To formulate the molecular clustering of interest, the Veytsman statistics is extended and fluctuation parameter is explicitly obtained as a solution to the quadratic equation. The proposed contribution was combined with a quasi-chemical nonrandom lattice fluid (QLF), which overpredicts the critical point. The combined model was found to require three clustering parameters besides three classical parameters and tested against vapor-liquid equilibrium data consisting of 43 nonpolar and polar components. The calculation results showed that the combined model satisfactorily represents the flattened part of the critical isotherm curve for methane as well as the top of the coexistence curve for the tested components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Soave, Chem. Eng. Sci., 27, 1197 (1972).

    Article  CAS  Google Scholar 

  2. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund., 15, 59 (1976).

    Article  CAS  Google Scholar 

  3. S. H. Huang and M. Radosz, Ind. Eng. Chem. Res., 29, 2284 (1990).

    Article  CAS  Google Scholar 

  4. M.A. Anisimov, A.A. Povodyrev and J.V. Sengers, Fluid Phase Equilib., 158–160, 537 (1999).

    Article  Google Scholar 

  5. J.V. Sengers, International union of pure and applied chemistry, Commission on Thermodynamics., Equations of state for fluids and fluid mixtures, 1st ed., Elsevier, Amsterdam, New York (2000).

    Google Scholar 

  6. G. F. Chou and J.M. Prausnitz, AlChE J., 35, 1487 (1989).

    CAS  Google Scholar 

  7. T. Kraska and U. K. Deiters, Int. J. Thermophys., 15, 261 (1994).

    Article  CAS  Google Scholar 

  8. C. J. Kedge and M.A. Trebble, Fluid Phase Equilib., 194–197, 401 (2002).

    Article  Google Scholar 

  9. S. B. Kiselev, Fluid Phase Equilib., 147, 7 (1998).

    Article  CAS  Google Scholar 

  10. J. Jianwen and J.M. Prausnitz, J. Chem. Phys., 111, 5964 (1999).

    Article  Google Scholar 

  11. K. G. Wilson, Physical Review B, 4, 3174 (1971).

    Article  Google Scholar 

  12. K. G. Wilson, Physical Review B, 4, 3184 (1971).

    Article  Google Scholar 

  13. W. S. Liming and A.W. John, J. Chem. Phys., 96, 4559 (1992).

    Article  Google Scholar 

  14. A.W. John and Z. Sheng, J. Chem. Phys., 103, 1922 (1995).

    Article  Google Scholar 

  15. L.D. Landau, E.M. Lifshitz and L. P. Pitaevskii, Statistical physics, 3d rev. and enl. ed., Pergamon Press, Oxford, New York (1980).

    Google Scholar 

  16. F. Fornasiero and L. L. A. Bertucco, AlChE J., 45, 906 (1999).

    CAS  Google Scholar 

  17. J. Mi, C. Zhong and Y.-G. Li, J. Chen, Chem. Phys., 305, 37 (2004).

    CAS  Google Scholar 

  18. S.B. Kiselev and J. F. Ely, Ind. Eng. Chem. Res., 38, 4993 (1999).

    Article  CAS  Google Scholar 

  19. M. S. Shin, Y. Lee and H. Kim, J. Chem. Thermodyn., 40, 174 (2008).

    Article  CAS  Google Scholar 

  20. J. Mi, Y. Tang, C. Zhong and Y.G. Li, J. Phys. Chem. B, 109, 20546 (2005).

    Article  CAS  Google Scholar 

  21. R.A. Heidemann and J.M. Prausnitz, Proceedings of the National Academy of Sciences, 73, 1773 (1976).

    Article  CAS  Google Scholar 

  22. M. S. Wertheim, J. Stat. Phys., 35, 35 (1984).

    Article  Google Scholar 

  23. M. S. Wertheim, J. Stat. Phys., 35, 19 (1984).

    Article  Google Scholar 

  24. B. A. Veytsman, J. Phys. Chem., 94, 8499 (1990).

    Article  CAS  Google Scholar 

  25. D.M. Pfund, T. S. Zemanian, J. C. Linehan, J. L. Fulton and C. R. Yonker, J. Phys. Chem., 98, 11846 (1994).

    Article  CAS  Google Scholar 

  26. S. C. Tucker, Chem. Rev., 99, 391 (1999).

    Article  CAS  Google Scholar 

  27. S. C. Tucker and M.W. Maddox, J. Phys. Chem. B, 102, 2437 (1998).

    Article  CAS  Google Scholar 

  28. C. S. Lee, J.W. Kang, J. H. Lee and K.-P. Yoo, Fluid Phase Equilib., 265, 215 (2008).

    Article  Google Scholar 

  29. M. S. Shin and H. Kim, Fluid Phase Equilib., 246, 79 (2006).

    Article  CAS  Google Scholar 

  30. J.M.H. Levelt Sengers, Fluid Phase Equilib., 158–160, 3 (1999).

    Article  Google Scholar 

  31. C. Panayiotou and I. C. Sanchez, J. Phys. Chem., 95, 10090 (1991).

    Article  CAS  Google Scholar 

  32. C. J. Kedge and M. A. Trebble, Fluid Phase Equilib., 217, 257 (2004).

    Article  CAS  Google Scholar 

  33. R.H. Perry, D.W. Green and J.O. Maloney, Perry’s chemical engineers’ handbook, 7th ed., McGraw-Hill, New York (1997).

    Google Scholar 

  34. G. Handel, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 24, 685 (1992).

    Article  Google Scholar 

  35. S. O. Derawi, M. L. Michelsen, G.M. Kontogeorgis and E. H. Stenby, Fluid Phase Equilib., 209, 163 (2003).

    Article  CAS  Google Scholar 

  36. R.B. Gupta and K. P. Johnston, Fluid Phase Equilib., 99, 135 (1994).

    Article  CAS  Google Scholar 

  37. S. B. Kiselev and J. F. Ely, Chem. Eng. Sci., 61, 5107 (2006).

    Article  CAS  Google Scholar 

  38. N.B. Vargaftik, Y.K. Vinogradov and V. S. Yargin, Handbook of physical properties of liquids and gases: Pure substances and mixtures, 3rd augm. and rev. ed., Begell House, New York (1996).

    Google Scholar 

  39. R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 18, 739 (1986).

    Article  CAS  Google Scholar 

  40. B.D. Smith and R. Srivastava, Thermodynamic data for pure compounds, Elsevier, Distributors for the U.S. and Canada, Elsevier Science Pub. Co., Amsterdam, New York, U.S.A. (1986).

    Google Scholar 

  41. T. E. Daubert and R. P. Danner, Design Institute for Physical Property Data (U.S.), Physical and thermodynamic properties of pure chemicals: data compilation, Hemisphere Pub. Corp., New York (1989).

    Google Scholar 

  42. P. Nowak, R. Kleinrahm and W. Wagner, J. Chem. Thermodyn., 28, 1441 (1996).

    Article  CAS  Google Scholar 

  43. E. C. Ihmels and E.W. Lemmon, Fluid Phase Equilib., 260, 36 (2007).

    Article  CAS  Google Scholar 

  44. W. Braker and A. L. Mossman, Matheson Company inc., Matheson gas data book, 6th ed., Matheson, Lyndhurst, NJ (1980).

    Google Scholar 

  45. J. Wu, Z. Liu, J. Pan and X. Zhao, J. Chem. Eng. Data, 49, 32 (2004).

    Article  CAS  Google Scholar 

  46. J. Wu, Z. Liu, B. Wang and J. Pan, J. Chem. Eng. Data, 49, 704 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwayong Kim.

Additional information

This paper is dedicated to Professor Jae Chun Hyun for celebrating his retirement from Department of Chemical and Biological Engineering of Korea University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Han, G.S., Breitholz, A. et al. An empirical near-critical correction for a quasi-chemical nonrandom lattice fluid. Korean J. Chem. Eng. 27, 289–298 (2010). https://doi.org/10.1007/s11814-009-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0350-0

Key words

Navigation