Skip to main content
Log in

Physical degradation of MEA in PEM fuel cell by on/off operation under nitrogen atmosphere

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The durability of PEMFCs is one of the most important issues for application in automotive vehicles with a repeated start-up and shut-down system. The understanding of degradation phenomena such as causes, mechanisms and influence of working condition is essential to improving the performance and lifetime of PEMFC. We conducted on/off cyclic operation in a single cell configuration with ultra purity nitrogen gas to investigate the physical degradation of membrane electrode assembly (MEA). After on/off cycle operation for 100,000 cycles under different humid condition, the characteristics of the MEAs were examined by in situ and ex situ analyses techniques. The physical degradation of MEA by on/off cycling led to a change in the membrane-electrode interfacial structure, which is mainly attributed to the loss of cell performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Gemmen and C.D. Johnson, Journal of Power Sources, 159, 646 (2006).

    Article  CAS  Google Scholar 

  2. W. Schmittinger and A. Vahidi, Journal of Power Sources, 180, 1 (2008).

    Article  CAS  Google Scholar 

  3. M. Marrony, R. Barrera, S. Quenet, S. Ginocchio, L. Montelatici and A. Aslanides, Journal of Power Sources, 182, 469 (2008).

    Article  CAS  Google Scholar 

  4. D. Liu and S. Case, Journal of Power Sources, 162, 521 (2006).

    Article  CAS  Google Scholar 

  5. S. Zhang, X. Yuan, H. Wang, W. Mérida, H. Zhu, J. Shen, S. Wu and J. Zhang, International Journal of Hydrogen Energy, 34, 388 (2009).

    Article  CAS  Google Scholar 

  6. A. Taniguchi, T. Akita, K. Yasuda and Y. Miyazaki, International Journal of Hydrogen Energy, 33, 2323 (2008).

    Article  CAS  Google Scholar 

  7. P. J. Ferreira, G. J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha and H. A. Gasteiger, Journal of The Electrochemical Society, 152(11), A2256 (2005).

    Article  Google Scholar 

  8. D. A. Stevens, M. T. Hicks, G. M. Haugen and J.R. Dahn, Journal of the Electrochemical Society, 152(12), A2309 (2005).

    Article  CAS  Google Scholar 

  9. A. S. Aricó, A. Stassi, E. Modica, R. Ornelas, I. Gatto, E. Passalacqua and V. Antonucci, Journal of Power Sources, 178, 525 (2008).

    Article  Google Scholar 

  10. R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood and M. A. Inbody, Journal of Power Sources, 163, 76 (2006).

    Article  CAS  Google Scholar 

  11. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann and C. Merten, Journal of Power Sources, 176, 444 (2008).

    Article  CAS  Google Scholar 

  12. H. Tang, Z. Qi, M. Ramani and J. F. Elter, Journal of Power Sources, 158, 1306 (2006).

    Article  CAS  Google Scholar 

  13. O.A. Baturina, S. R. Aubuchon and K. J. Wynne, Chemistry Material, 18, 1498 (2006).

    Article  CAS  Google Scholar 

  14. A. B. Laconti, M. Hanmada and R. C. Mcdonald, Handbook of fuel cells-fundamentals, technology, and application, Wiley & Sons, Ltd., Chapter 49, 647 (2003).

  15. S. Sugawara, T. Maruyama, Y. Nagahara, S. S. Kocha, K. Shinohra, K. Tsujita, S. Mitsushima and K. Ota, Journal of Power Sources, 187, 324 (2009).

    Article  CAS  Google Scholar 

  16. V.O. Mittal, H. R. Kunz and J.H. Fenton, Journal of the Electrochemical Society, 153(9), A1755 (2006).

    Article  CAS  Google Scholar 

  17. A. Collier, H. Wang, X. Z. Yuan, J. Zhang and D. P. Wilkinson, International Journal of Hydrogen Energy, 31, 1838 (2006).

    Article  CAS  Google Scholar 

  18. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu and W. Merida, Journal of Power Sources, 184, 104 (2008).

    Article  CAS  Google Scholar 

  19. S. S. Kocha, Handbook of fuel cells-fundamentals, technology, and application, Wiley & Sons, Ltd., Chapter 43, 538 (2003).

  20. R. O’Hayre, S.-W. Cha, W. Colella and F. B. Prinz, Fuel cell fundamentals, John Wiley & Sons, Ltd. (2006).

  21. M. Ciureanu and R. Roberge, Journal of Physical Chemistry B, 105, 3531 (2001).

    Article  CAS  Google Scholar 

  22. C. S. Kong, D.-Y. Kim, H.-K. Lee, Y.-G. Shul and T.-H. Lee, Journal of Power Sources, 108, 185 (2002).

    Article  CAS  Google Scholar 

  23. B. Wahdame, D. Candusso, X. Francois, F. Harel, M.-C. Pera, D. Hissel and J.-M. Kauffmann, International Journal of Hydrogen Energy, 32, 4523 (2007).

    Article  CAS  Google Scholar 

  24. T.R. Ralph, G.A. Hards, J. E. Keating, S.A. Campbell, D. P. Wilkinson, M. Davis, J. St-Pierre and M. C. Johnson, Journal of the Electrochemical Society, 144, 3845 (1997).

    Article  CAS  Google Scholar 

  25. Z. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu and S. Holdcroft, Journal of Power Sources, 160, 872 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gun Shul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, D., Park, S., Jeon, Y. et al. Physical degradation of MEA in PEM fuel cell by on/off operation under nitrogen atmosphere. Korean J. Chem. Eng. 27, 104–109 (2010). https://doi.org/10.1007/s11814-009-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0312-6

Key words

Navigation