Skip to main content

Advertisement

Log in

Speed-up of the disaggregation of emission inventories and increased resolution of disaggregated maps using landuse data

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study describes the full disaggregation process of emission inventory maps in support of environmental modeling studies in a geographical information system. Using a heuristic approach, appropriate algorithms were found to accelerate the computational disaggregation speed. The algorithms were based on scan-conversion algorithms employed in the field of computer graphics. Various algorithms were analyzed in terms of supporting emission inventories with different shapes, such as points, polylines and polygons. The algorithms were implemented by using Visual Basic, thereby enabling the efficiencies of the algorithms to be analyzed and compared with each other. For the disaggregation of polygon types, with the aim of increasing the resolution of an inventory map, we suggest the advanced polygon-disaggregation method with land use data. An air dispersion simulation was performed in order to compare the accuracy of the emission input data generated by existing disaggregation methods and the advanced method proposed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Berkowicz, M. Winther and M. Ketzel, Environ. Modell. Softw., 21, 454 (2006).

    Article  Google Scholar 

  2. A. Jeaecker-Voirol and P. Pelt, Environ. Modell. Softw., 15, 575 (2000).

    Article  Google Scholar 

  3. F. Monforti and A. Pederzoli, Environ. Modell. Softw., 20, 505 (2005).

    Article  Google Scholar 

  4. J. M. Armstrong and A. M. Khan, Comput. Environ. Urban, 28, 421 (2004).

    Article  Google Scholar 

  5. J. Hao, H. Tian and Y. Lu, Environ. Sci. Technol., 36, 552 (2002).

    Article  CAS  Google Scholar 

  6. P. Symonidis, I. Ziomas and A. Proyou, Environ. Modell. Softw., 19, 413 (2004).

    Article  Google Scholar 

  7. D.Q. Tong, N. Z. Muller, D. L. Mauzerall and R.O. Mendelsohn, Environ. Sci. Technol., 40, 1395 (2006).

    Article  CAS  Google Scholar 

  8. W. Winiwarter and G. Schimak, Environ. Modell. Softw., 20, 1469 (2005).

    Article  Google Scholar 

  9. Lakes Environmental Software, Inc., User’s guide for the Industrial Source Complex (ISC3) dispersion models, http://support.lakesenvironmental.com/Models/ISC3Docs/isc3v1.pdf (2006).

  10. T.W. Tesche, R.M. Morris, G. Tonnesen, D. McNally, J. Boylan and P. Brewer, Atmos. Environ., 40, 4906 (2006).

    Article  CAS  Google Scholar 

  11. D. Tuia, M. Osses de Eicker, R. Zah, M. Osses, E. Zarate and A. Clappier, Atmos. Environ., 41, 3658 (2007).

    Article  CAS  Google Scholar 

  12. M. Osses de Eicker, R. Zah, R. Trivino and H. Hurni, Atmos. Environ., 42, 1491 (2008).

    Article  CAS  Google Scholar 

  13. D. A. Niemeier and Y. Zheng, Environ. Sci. Technol., 38, 2133 (2004).

    Article  CAS  Google Scholar 

  14. J. Dai and D. M. Rocke, Environ. Modell. Softw., 15, 293 (2000).

    Article  Google Scholar 

  15. M. Dalvi, G. Bieg, U. Patil, A. Kaginalkar, C. Sharma and A. P. Mitra, Atmos. Environ., 40, 2995 (2006).

    Article  CAS  Google Scholar 

  16. V. Aken JR., IEEE Comput. Graph., 4, 24 (1984).

    Article  Google Scholar 

  17. J. E. Bresenham, IBM Syst. J., 4, 25 (1965).

    Article  Google Scholar 

  18. P. L. Gardner, IBM Technol. Disclosure B., 18, 1595 (1975).

    Google Scholar 

  19. G. Gill, IEEE Comput. Graph., 14, 66 (1994).

    Article  Google Scholar 

  20. A. Haque, M. S. Rahman, M. Bakht and M. Kaykobad, Comput. Graph., 30, 207 (2006).

    Article  Google Scholar 

  21. C.-W. Huang and T.-Y. Shih, Comput. Geosci., 23, 109 (1997).

    Article  Google Scholar 

  22. M. R. Kappel, An ellipse-drawing algorithm for raster displays. In: Fundamental algorithms for computer graphics, Springer: Berlin (1985).

    Google Scholar 

  23. U. Manber, Introduction to algorithms; a creative approach, Addison-Wesley Publishing Co., Reading, Massachusetts (1989).

    Google Scholar 

  24. M. L. V. Pitteway, Comput. J., 10, 282 (1967).

    Article  Google Scholar 

  25. F. P. Preparata and M. I. Shamos, Computational geometry: An introduction, 2nd ed. Springer, New York (1985).

    Google Scholar 

  26. B. Zalik and G. J. Clapworthy, Comput. and Graph., 23, 353 (1999).

    Article  Google Scholar 

  27. B. Zalik and I. Kolingerova, Comput. Geosci., 27, 1135 (2001).

    Article  Google Scholar 

  28. TRC Companies, Inc., A user’s guide for the CALPUFF dispersion model, http://www.src.com/verio/download/CALPUFF_UsersGuide.pdf (2006).

  29. Environmental Systems Research Institute, Inc., ESRI Shapefile Technical Description, printed in the United States of America, http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf (1998).

  30. X. Wu and J. G. Rokne, Comput. Graph. Image Anal., 37, 331 (1987).

    Article  Google Scholar 

  31. P. Stephenson and B. Litow, Comput. Graph., 25, 681 (2001).

    Article  Google Scholar 

  32. F. Xia, Pattern Recogn., 36, 1383 (2003).

    Article  Google Scholar 

  33. H. Park, S. Chah, E. Choi, H. Kim and J. Yi, Atmos. Environ., 36, 4851 (2002).

    Article  CAS  Google Scholar 

  34. M.-S. Kim, J. H. Kim, H.-S. Park, Y. S. Sun, H.-S. Kim, K. H. Choi and J. Yi, Korean J. Chem. Eng., 23, 919 (2006).

    Article  CAS  Google Scholar 

  35. M.-S. Kim, J. H. Kim, H.-S. Park, Y. S. Sun, H.-S. Kim, K. H. Choi and J. Yi, Korean J. Chem. Eng., 24, 763 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongheop Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Kwak, B.K., Shin, C.B. et al. Speed-up of the disaggregation of emission inventories and increased resolution of disaggregated maps using landuse data. Korean J. Chem. Eng. 26, 1620–1629 (2009). https://doi.org/10.1007/s11814-009-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0280-x

Key words

Navigation