Skip to main content
Log in

Scratch resistance and oxygen barrier properties of acrylate-based hybrid coatings on polycarbonate substrate

  • Catalysis, Reaction Engineering, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Organic/inorganic hybrid coating materials were synthesized using acrylate end-capped polyester, 1,6-hexanediolacrylate, tetraethoxysilane (TEOS), and 3-trimethoxysilylpropylmethacrylate (TMSPM). The hybrid materials were cast onto a polycarbonate (PC) substrate and cured by UV irradiation to give a hybrid film with covalent linkage between the inorganic and the organic networks. The coating layer was characterized by FT-IR and 29Si-NMR, and pencil hardness and oxygen permeation rate of coated films were investigated. The pencil hardness of all samples examined in this study was higher than 1H, whereas that of uncoated PC substrate was 6B. The hardness enhancement after coating may due to incorporation of organic acrylate resin. The oxygen permeability coefficient of the film coated with hybrid material on 3-aminopropyltriethoxysilane (APTEOS) pretreated polycarbonate substrate was 1.67×10−3 GPU, the lowest value in this work, whereas that of uncoated PC substrate was 8.07×10−3 GPU. The lower oxygen permeation rates of these films are attributed to the good adhesion between organic/inorganic hybrid coating layer and PC substrate and a dense structure induced by an increase of network density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hozumi and O. Takai, Appl. Surf. Sci., 103, 431 (1996).

    Article  CAS  Google Scholar 

  2. P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennet and M. B. Sullivan, Displays, 22, 65 (2001).

    Article  CAS  Google Scholar 

  3. S. Amberg-Schwab, H. Katschorek, U. Weber, M. Hoffmann and A. Burger, J. Sol-Gel Sci. Technol., 19, 125 (2000).

    Article  CAS  Google Scholar 

  4. Y. Kim, K. Kusakabe, S. Morooka and S. Yang, Korean J. Chem. Eng., 18, 106 (2001).

    Article  CAS  Google Scholar 

  5. Z. Zong, J. He and M.D. Soucek, Progress in Organic Coatings, 53, 83 (2005).

    Article  CAS  Google Scholar 

  6. W. Que, Q.Y. Zhang, Y. C. Chan and C.H. Kam, Comp. Sci. and Technol., 63, 347 (2003).

    Article  CAS  Google Scholar 

  7. J. Chung, D. Kim, W. Ahn, J. Ko and W. Cheong, Korean J. Chem. Eng., 21, 132 (2004).

    Article  CAS  Google Scholar 

  8. C. Becker, H. Krug and H. Schmidt, J. Sol-Gel Sci. Technol., 8, 625 (1997).

    CAS  Google Scholar 

  9. D. Hoebbel, M. Nacken and H. Schmidt, J. Sol-Gel Sci. Technol., 21, 177 (2001).

    Article  CAS  Google Scholar 

  10. N. Tohge, K. Tadanaga and H. Sakatani, J. Mater. Sci. Letters, 15, 1517 (1996).

    Article  CAS  Google Scholar 

  11. R. Nass, E. Arpac, W. Glaubitt and H. Schmidt, J. Non-Cryst. Solids, 121, 370 (1990).

    Article  CAS  Google Scholar 

  12. B. Wang and G. L. Wilkes, J. Macromol. Sci. Pure Appl. Chem., 31, 249 (1994).

    Google Scholar 

  13. G. Bonilla, M. Martinez, A. M. Mendoza and J. Widmaier, European Polymer J., 42, 2977 (2006).

    Article  CAS  Google Scholar 

  14. E. Rubio, J. Almaral and R. Ramirez-Bon, Optical Materials, 27, 1266 (2005).

    Article  CAS  Google Scholar 

  15. K. Jang and H. Kim, J. Sol-Gel Sci. Technol., 41, 19 (2007).

    Article  CAS  Google Scholar 

  16. C. Lim, S. I. Hong and H. Kim, J. Sol-Gel Sci. Technol., 43, 35 (2007).

    Article  CAS  Google Scholar 

  17. B. Lebeau, S. Brasselet, J. Zyss and C. Sanchez, Chem. Mater., 9, 1012 (1997).

    Article  CAS  Google Scholar 

  18. A. Shimojima and K. Kuroda, Langmuir, 18, 1144 (2002).

    Article  CAS  Google Scholar 

  19. M. Oubaha, M. Dubois, B. Murphy and P. Etienne, J. Sol-Gel Sci. Technol., 38, 111 (2006).

    Article  CAS  Google Scholar 

  20. C. L. Jackson, B. J. Bauer, A. I. Nakatami and J.D. Barnes, Chem. Mater., 8, 727 (1996).

    Article  CAS  Google Scholar 

  21. J. Gilberts, A. H. A. Tinnemans, M. P. Hogerheide and T. P.M. Koster, J. Sol-Gel Sci. Technol., 11, 153 (1998).

    Article  CAS  Google Scholar 

  22. Z. Chen, L. Wu, E. Chwa and O. Tham, Materials Science and Engineering A, 493, 292 (2008).

    Article  Google Scholar 

  23. K. Jang, J. S. Kim, S. Lee and H. Kim, Solid State Phenomena, 124–126, 683 (2007).

    Article  Google Scholar 

  24. K.C. Vrancken, L. D. Coster, P. Van der Voort, P. J. Brobet and E. F. Vansant, J. Colloid Interf. Sci., 170, 71 (1995).

    Article  CAS  Google Scholar 

  25. A. Shimizu. H. Yoshino, E. Okabayashi, E. Nishio and C. J. O’Connor, J. Chem. Soc., Faraday Trans., 93, 1971 (1997).

    Article  Google Scholar 

  26. P. Zhu, M. Teranishi, J. Xiang, Y. Masuda, W. S. Seo and K. Komoto, Thin Solid Films, 473, 351 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Oh, K.K., Park, S. et al. Scratch resistance and oxygen barrier properties of acrylate-based hybrid coatings on polycarbonate substrate. Korean J. Chem. Eng. 26, 1550–1555 (2009). https://doi.org/10.1007/s11814-009-0263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0263-y

Key words

Navigation