Skip to main content
Log in

Gaseous ozone decomposition using a nonthermal plasma reactor with adsorbent and dielectric pellets

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

For the treatment of gaseous ozone emission, this study investigated the adsorption and enrichment of ozone and the destruction of the adsorbed ozone by nonthermal plasma. A nonthermal plasma reactor with adsorbent pellets in it was operated in two sequential modes, adsorption and decomposition of ozone. First, the ozone-containing gas was flowed through the reactor for a given period, in which the ozone was adsorbed and concentrated. In the next step, the gas was switched to argon or nitrogen, bypassing the ozone-containing gas, and AC high voltage was applied to the reactor to produce nonthermal plasma for the decomposition of the adsorbed ozone. By this method, the gaseous ozone was effectively treated with reasonable electrical energy consumption. The adsorbed ozone was converted into molecular oxygen when argon was used as the ozone decomposition gas, whereas a small amount of nitrogen oxides was formed with nitrogen. The energy consumed to decompose the adsorbed ozone was found to be 540 and 795 kJ/g-O3 decomposed with argon and nitrogen, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Demirev and V. Nenov, Ozone: Sci. Eng., 27, 475 (2005).

    Article  CAS  Google Scholar 

  2. J.W. Choi, H.K. Song, W. Lee, K.-K. Koo, C. Han and B.-K. Na, Korean J. Chem. Eng., 21, 398 (2004).

    Article  CAS  Google Scholar 

  3. T. Oda, T. Takahashi and K. Yamaji, IEEE Trans. Ind. Appl., 40, 1249 (2004).

    Article  CAS  Google Scholar 

  4. S.H. Kong, C. I. Kwon and M.H. Kim, Korean J. Chem. Eng., 20, 293 (2003).

    Article  CAS  Google Scholar 

  5. E. J. Rosenfeldt, K. G. Linden, S. Canonica and U. von Gunten, Water Res., 40, 3695 (2006).

    Article  CAS  Google Scholar 

  6. Y. Sun, Y. Qiu, A. Nie and X. Wang, IEEE Trans. Plasma Sci., 35, 1496 (2007).

    Article  CAS  Google Scholar 

  7. S. J. Yoa, Y. S. Cho and J. H. Kim, Korean J. Chem. Eng., 22, 364 (2005).

    Article  CAS  Google Scholar 

  8. G.-B. Zhao, S. V. B. J. Garikipati, X. Hu, M. D. Argyle and M. Radosz, AIChE J., 51, 1800 (2005).

    Article  CAS  Google Scholar 

  9. Z. Hao, D. Cheng, Y. Guo and Y. Liang, Appl. Catal. B: Environ., 33, 217 (2001).

    Article  CAS  Google Scholar 

  10. B. Dhandapani and S. T. Oyama, Appl. Catal. B: Environ., 11, 129 (1997).

    Article  CAS  Google Scholar 

  11. R. Radhakrishnan and S. T. Oyama, J. Catal., 199, 282 (2001).

    Article  CAS  Google Scholar 

  12. R. C. Sullivan, T. Thornberry and J. P. D. Abbatt, Atmos. Chem. Phys., 4, 1301 (2004).

    Article  CAS  Google Scholar 

  13. C. Subrahmanyam, D. A. Bulushev and L. Kiwi-Minsker, Appl. Catal. B: Environ., 61, 98 (2005).

    Article  CAS  Google Scholar 

  14. Y. C. Lin, C. L. Chang, T. S. Lin, H. Bai, M. Yan, F. Ko, C. Wu and C. Huang, Korean J. Chem. Eng., 25, 446 (2008).

    Article  CAS  Google Scholar 

  15. O.R. Wulf and R. C. Tolman, The thermal decomposition of ozone, in Proc. Natl. Acad. Sci. USA, 13, 272 (1927).

    Article  CAS  Google Scholar 

  16. U. Kogelschatz, Plasma Chem. Plasma Proc., 23, 1 (2003).

    Article  CAS  Google Scholar 

  17. L. A. Rosocha, IEEE Trans. Plasma Sci., 33, 129 (2005).

    Article  CAS  Google Scholar 

  18. C. Lee, D.B. Graves, M. A. Lieberman and D.W. Hess, J. Electrochem. Soc., 141, 1546 (1994).

    Article  Google Scholar 

  19. J. Kitayama and M. Kuzumoto, J. Phys. D: Appl. Phys., 30, 2453 (1997).

    Article  CAS  Google Scholar 

  20. I. Stefanoviæ, N.K. Bibinov, A.A. Deryugin, I. P. Vinogradov, A. P. Napartovich and K. Wiesemann, Plasma Sources Sci. Technol., 10, 406 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Sun Mok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mok, Y.S., Koh, D.J., Shin, D.N. et al. Gaseous ozone decomposition using a nonthermal plasma reactor with adsorbent and dielectric pellets. Korean J. Chem. Eng. 26, 1613–1619 (2009). https://doi.org/10.1007/s11814-009-0248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0248-x

Key words

Navigation