Skip to main content
Log in

Vapor-liquid equilibrium in low pressure water+congener mixtures

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Vapor-liquid equilibrium in binary water+congeners mixtures found in alcoholic distillation has been analyzed using the Peng-Robinson equation of state and one of the most popular modern mixing rules, the Wong-Sandler model. Accurate modeling of the concentration of congeners (substances different from ethanol and water) in the vapor phase is of special importance because these substances give some special characteristics of flavor and aroma to the final distilled spirit and also because their concentrations are regulated by law. In the Wong-Sandler mixing rules the van Laar model for the Gibbs excess energy has been used. The type of model used in this work is commonly used to correlate high pressure phase equilibrium and has not yet been used to treat complex low pressure water+congener mixtures as done in this work. Eight binary water+congeners mixtures have been considered for analysis. Comparison with available literature data is done and the accuracy of the model to correlate the pressure and the vapor phase concentration of the congeners is discussed. It is concluded that the model used is accurate enough for distillation analysis, modeling and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hikari and R. Kubo, J. Chem. Eng. Japan, 8, 294 (1975).

    Article  Google Scholar 

  2. M. P.Y. Lillo, E. Latrille, G. Casaubon, E. Agosin, E. Bordeu and N. Martin, Food Quality and Preference Jan., 16, 59 (2005).

    Article  Google Scholar 

  3. J. Lora, M. I. Iborra, R. Perez and I. Carbonell, Rev. Esp. Cien. Tec. Ali., 32, 621 (1992).

    CAS  Google Scholar 

  4. C.A. Faúndez, V.H. Alvarez and J.O. Valderrama, Thermochimica Acta, 450, 110 (2006).

    Article  Google Scholar 

  5. V. Athès, P. Paricaud, M. Ellaite, J. Souchon and W. Fürst, Fluid Phase Equilibria, 265, 139 (2008).

    Article  Google Scholar 

  6. J. M. Prausnitz, R. N. Lichtenthaler and E. Gomes de Azevedo, Molecular thermodynamics of fluid-phase equilibria, Prentice Hall International Series, New Jersey, USA (1999).

    Google Scholar 

  7. J. O. Valderrama, Ind. Eng. Chem. Research, 42, 1603 (2003).

    Article  CAS  Google Scholar 

  8. S.M. Walas, Phase equilibria in chemical engineering, Butterworth Pub., Storeham (1985).

    Google Scholar 

  9. J. O. Valderrama, C. Pizarro and R. Rojas, Alimentaria, 39, 151 (2001).

    Google Scholar 

  10. C.A. Faúndez and J.O. Valderrama, J. Food Eng., 65, 577 (2004).

    Article  Google Scholar 

  11. C.A. Faúndez, V. H. Alvarez and J. O. Valderrama, J. Phase Equilib. Diff., 25, 230 (2004).

    Google Scholar 

  12. V.H. Alvarez, C.A. Faúndez and J.O. Valderrama, Can. J. Chem. Eng., 83, 485 (2005).

    Article  CAS  Google Scholar 

  13. H. Orbey and S. I. Sandler, Equations of state and their mixing rules, Cambridge University Press, USA (1998).

    Google Scholar 

  14. C. Kwak, S. I. Sandler and H. S. Byun, Korean J. Chem. Eng., 23, 1016 (2006).

    Article  CAS  Google Scholar 

  15. G. Seong, A. R. Kim, K. P. Yoo and J. S. Lim, Korean J. Chem. Eng., 26, 206 (2009).

    Article  CAS  Google Scholar 

  16. O. Ferreira, E.A. Brignole and E.A. Macedo, J. Chem. Thermodynamics, 36, 1105 (2004).

    Article  CAS  Google Scholar 

  17. X. S. Li and P. Englezos, Fluid Phase Equilibria, 224, 111 (2004).

    Article  CAS  Google Scholar 

  18. N.M. Al-Saifi, E. Z. Hamad and P. Englezos, Fluid Phase Equilibria, 271, 82 (2008).

    Article  CAS  Google Scholar 

  19. D.Y. Peng and D.B. Robinson, Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  20. M. I. Huron and J. Vidal, Fluid Phase Equilibria, 3, 255 (1979).

    Article  CAS  Google Scholar 

  21. D. S. Wong and S. I. Sandler, AIChE J., 38, 671 (1992).

    Article  CAS  Google Scholar 

  22. S. Dahl and M. L. Michelsen, AIChE J., 36, 1829 (1990).

    Article  CAS  Google Scholar 

  23. M. T. Lee and S. T. Lin, Fluid Phase Equilibria, 254, 28 (2007).

    Article  CAS  Google Scholar 

  24. T. E. Daubert, R. P. Danner, H. M. Sibul and C.C Stebbins, Physical and thermodynamic properties of pure chemicals, Data compilation, Taylor & Francis, London, UK (1996).

    Google Scholar 

  25. J. Gmehling, U. Onken and W. Arlt, Vapor-liquid equilibrium data collection, DECHEMA, Frankfurt, Germany (1982).

    Google Scholar 

  26. S. Ohe, Vapor-liquid equilibrium data, physical sciences data 37, Kodansha Ltd., Tokyo and Elsevier Science Publishers B. V. Amsterdan (1989).

  27. M. Reilly, Computer programs for chemical engineering education, vol. 2, Sterling Swift, TX, USA (1972).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Omar Valderrama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faúndez, C.A., Urbina, F.A. & Valderrama, J.O. Vapor-liquid equilibrium in low pressure water+congener mixtures. Korean J. Chem. Eng. 26, 1373–1378 (2009). https://doi.org/10.1007/s11814-009-0200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0200-0

Key words

Navigation