Skip to main content

Advertisement

Log in

Analysis on thermal stress deformation of rotary air-preheater in a thermal power plant

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thermal stress deformation is a disadvantage of the rotary air preheater, which results in leakages of fluids and decrease of efficiency of the thermal system. To evaluate the results of deformation during its operation, the temperature distribution of storage materials is calculated by solving a simplified model. In this developed method, the effect of dimensionless parameters on the temperature distribution of rotary air preheater was investigated and compared with the results of modified heat transfer coefficient method. By solving coordination, structural and geometrical equations, and boundary condition in thermal-elastic theory, the thermal stress distributions in rotary air preheater are obtained in an analytical method. Experimental results are obtained by employing factorial design values of rotary air preheater for the validation of the calculation data. Good agreement has been yielded by comparing the analytical data and experimental data. Therefore, some conclusions necessary to undertake an adequate adjustment of thermal stress deformation have also been formulated, and online monitoring of the clearance of radial seals is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Shah, Applied Thermal Engineering, 19, 685 (1999).

    Article  Google Scholar 

  2. Z. Y. Chang, Mechanism and Machine Theory, 36, 143 (2001).

    Article  Google Scholar 

  3. T. Kant, Journal of Thermal Stresses, 17, 229 (1994).

    Article  Google Scholar 

  4. T. Skeipko, Heat Transfer Eng., 18, 56 (1997).

    Article  Google Scholar 

  5. T. Skiepko, Heat Recov. Syst., 8, 469 (1998).

    Article  Google Scholar 

  6. T. Skiepko, Heat Transfer Eng., 27, 14 (1993).

    Google Scholar 

  7. V. I. Gromovyk, J. Appl. Maths Mechs., 59, 159 (1995).

    Article  Google Scholar 

  8. M. Sunar, J. of Mat. Pro. Tech., 123, 172 (2006).

    Google Scholar 

  9. A. Robaldo, Computers and Structures, 84, 1236 (2006).

    Article  Google Scholar 

  10. F. A. Creswick, Ind. Math., 8, 61 (1957).

    Google Scholar 

  11. J. R. Mondt, ASME J. Eng. Power, 86, 121 (1964).

    Google Scholar 

  12. T. J. Lambertson, Trans. ASME, 15, 57 (1957).

    Google Scholar 

  13. W. M. Kays, McGraw Hill Co. (1984).

  14. G. D. Banke, ASME, J., Eng., Power, 86, 105 (1964).

    Google Scholar 

  15. N. Ghodsi, Applied Thermal Engineering, 23, 571 (2003).

    Article  Google Scholar 

  16. M. Djuric and J. Hung. Indus. Chem., 17, 1 (1989).

    CAS  Google Scholar 

  17. K. C. Leong, Heat Recov. Syst. CHP, 11, 461 (1991).

    Article  CAS  Google Scholar 

  18. D. S. Beck, Trans. ASME, 116, 574 (1994).

    Google Scholar 

  19. G. D. Bahnke, ASME J. Eng. Power, 86, 105 (1964).

    Google Scholar 

  20. A. J. Willmott, Journal Institute of Energy, 66, 54 (1999).

    Google Scholar 

  21. T. Skiepko, Int. J. Heat Mass Transf., 31, 2227 (1988).

    Article  CAS  Google Scholar 

  22. T. Skiepko, Int. J Heat Mass Transf., 32, 1443 (1989).

    Article  CAS  Google Scholar 

  23. F. W. Larson, Int. J. Heat Mass Transf., 10, 149 (1967).

    Article  Google Scholar 

  24. A. Klinkenberg, Ind. Eng. Chem., 46, 2286 (1954).

    Google Scholar 

  25. F. W. Schmidt, Int. J. Heat Mass Transf., 100, 737 (1978).

    Google Scholar 

  26. J. Szego, Int. J. Heat Mass Transf., 100, 740 (1978).

    Google Scholar 

  27. D. Y. Yoon, K. H. Choi, Y. H. Kim and L. H. Kim, Korean J. Chem. Eng., 25, 217 (2008).

    Article  Google Scholar 

  28. B. J. Drobnic, Int. J. Heat Mass Transf., 10, 161 (2006).

    Google Scholar 

  29. S. Poncet, Int. J. Heat Mass Transf., 50, 1528 (2007).

    Article  CAS  Google Scholar 

  30. http://www.howden.com/en

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungtaek Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhao, L., Xu, Z. et al. Analysis on thermal stress deformation of rotary air-preheater in a thermal power plant. Korean J. Chem. Eng. 26, 833–839 (2009). https://doi.org/10.1007/s11814-009-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0139-1

Key words

Navigation