Skip to main content
Log in

Reduction of concentration polarization at feeding interphase of a hollow fiber supported liquid membrane by using periodic operation

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An experimental investigation was carried out to reduce the concentration polarization at feeding interphase between feed solution and liquid membrane imposing flow instabilities. The periodic operation of the hollow fiber supported liquid membrane for separation of lanthanide metal by using D2EHPA as extractant dissolved in kerosene. The operating flow rate of the feed solution was varied according to a symmetric square wave function around time-average values of 200, 300 and 400 ml/min. Time periods ranging from 18 to 3 minutes and amplitudes of 50 and 100 ml/min were investigated. The results of these periodic tests were compared with results obtained from the conventional steadystate mode of operation. It has been found that the periodic operation leads to higher stripping concentration or higher ion flux than that obtained from the corresponding steady state operating conditions. This is because periodic operation disturbs concentration polarization in the boundary layer between the feed solution and liquid membrane. It has also been found that the ion flux increases with increasing amplitudes and decreasing time periods of the forcing function. However, when the period is less than 3 minutes the flux decreases because the liquid membrane is peeled out from the pores of hollow fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ramakul, K. Nakararueng and U. Pancharoen, Korean J. Chem. Eng., 21, 1212 (2004).

    Article  Google Scholar 

  2. U. Pancharoen, P. Ramakul and W. Patthaveekongka, J. Ind. Eng. Chem., 11(6), 926 (2005).

    Google Scholar 

  3. J. Marchese, M. E. Campderrós and A. Acosta, J. Chem. Tech. Biotechnol., 64, 293 (1995).

    Article  CAS  Google Scholar 

  4. C. Moreno, A. Hrdlicka and M. Valiente, J. Membr. Sci., 81, 121 (1993).

    Article  CAS  Google Scholar 

  5. O. Loiacono, E. Drioli and R. Molinari, J. of Membr. Sci., 28, 123 (1986).

    Article  CAS  Google Scholar 

  6. R. Rautenbach and R. Albrecht, Membrane processes, John Wiley & Sons, Ltd (1989).

  7. P. Ramakul, T. Prapasawad, U. Pancharoen and W. Pattaveekongka, J. Chin. Inst. Chem. Engrs, 38, 489 (2007).

    Article  CAS  Google Scholar 

  8. M. Chidambaram, Can. J. Chem. Eng., 71, 974 (1993).

    Article  CAS  Google Scholar 

  9. N. M. Al-Bastaki and A. Abbas, Desalination, 136, 255 (2001).

    Article  CAS  Google Scholar 

  10. N. M. Al-Bastaki and A. Abbas, Desalination, 123, 173 (1999).

    Article  CAS  Google Scholar 

  11. B. W. Heinz and B. Georges, J. of Membr. Sci., 80, 35 (1993).

    Article  Google Scholar 

  12. E. Spiazzi, J. Lenoir and A. Grangeon, J. Membr. Sci., 80, 49 (1992).

    Article  Google Scholar 

  13. V. Garo, A. Ananth and G. Erdogan, Chem. Eng. Sci., 43, 2957 (1988).

    Article  Google Scholar 

  14. Y. Rajiv and G. R. Rinker, Chem. Eng. Sci., 44, 2191 (1989).

    Article  Google Scholar 

  15. M. P. Unni, R. R Hudgins and P. L. Silverton, Can. J. Chem., Eng., 31, 623 (1973).

    Article  Google Scholar 

  16. H. B. Winzeler and G. Belfort, J. Membr. Sci., 80, 35 (1993).

    Article  CAS  Google Scholar 

  17. Y. J. Kennedy, R. L. Merson and B. J. McCoy, Chem. Eng. Sci., 29, 1927 (1974).

    Article  CAS  Google Scholar 

  18. S. Ilias and R. Govind, Sep. Sci. and Technol., 25 (1990).

  19. W. S. Winston and K. K. Sirkar, Membrane handbook, Van Nostrand Reinhold (1992).

  20. W. Kiatkittipong, S. Assabumrungrat, P. Praserthdam and S. Goto, J. chem. Eng. Jap., 35, 547 (2002).

    Article  CAS  Google Scholar 

  21. G. Schulz, Desalination, 68, 191 (1988).

    Article  CAS  Google Scholar 

  22. P. Ramakul and U. Pancharoen, Korean J. Chem. Eng., 20, 724 (2003).

    Article  Google Scholar 

  23. P. Ramakul, W. Pattaweekongka and U. Pancharoen, J. Chin. Inst. Chem. Engrs., 36 (2005).

  24. T. Prapasawat, P. Ramakul, C. Satayaprasert, U. Pancharoen and A.W. Lothongkum, Korean J. Chem. Eng., 25, 158 (2008).

    Article  CAS  Google Scholar 

  25. A. Kumar, R. Haddad, G. Benzal, R. Ninou and A. M. Sastre, J. Membr. Sci., 174, 17 (2002).

    Article  Google Scholar 

  26. R. B. Bird, E. S. Warren and N. L. Edwin, Transport phenomena, 2nd Edition, John Wiley & Sons, Inc. (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakorn Ramakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakul, P., Leepipatpiboon, N., Yamoum, C. et al. Reduction of concentration polarization at feeding interphase of a hollow fiber supported liquid membrane by using periodic operation. Korean J. Chem. Eng. 26, 765–769 (2009). https://doi.org/10.1007/s11814-009-0128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0128-4

Key words

Navigation