Skip to main content
Log in

Effects of Cu x TiO y nanometer particles on biological toxicity during zebrafish embryogenesis

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study investigated the toxicity of Cu (1, 10, 15, and 25 mol%) loaded TiO2 and pure TiO2 nanometersized photocatalysts during the development of zebrafish embryogenesis. The hatch rate decreased in the Cu x TiO y nanoparticles exposed groups (10, 20 ppt) compared to pure TiO2 nano-particles (10, 20 ppt) exposed or control groups. These Cu x TiO y and TiO2 nanoparticles led to developing mutated embryos with abnormal notochord formation, no tail, damaged eyes and abnormal heart development. Exposure to Cu x TiO y and pure TiO2 nanoparticles led to glutathione increase, catalase activity increase, GST increase and GSR increase than control. Penetration of the Cu x TiO y and pure TiO2 nanoparticles to the embryo was also tested. It was observed that Cu x TiO y and pure TiO2 nanoparticles penetrated into cells. Moreover Cu x TiO y penetrated into the skin, nerve and yolk sac epithelium cells on the zebrafish larvae as aggregated particles, which may induce the direct interaction between nanoparticles and cell to cause adverse biological responses. As a result, the Cu-loaded TiO2 nanoparticles had the toxicity of zebrafish embryo and larvae in the water environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sreethawong, Y. Suzuki and S. Yoshikawa, Catal. Commun., 6,119 (2005).

    Article  CAS  Google Scholar 

  2. W. Ho, J. C. Yu and J. Yu, Langmuir, 21, 3486 (2005).

    Article  CAS  Google Scholar 

  3. S. Kim, S. Hwang and W. Choi, J. Phys. Chem. B, 109, 24260 (2005).

  4. T. J. Kemp and R. A. McIntyre, Polym. Degrad. Stabil., 91, 165 (2006).

    Article  CAS  Google Scholar 

  5. I. Tseng, J. C. S. Wu and H. Chou, J. Catal., 221, 432 (2004).

    Article  CAS  Google Scholar 

  6. Z. Li, W. Shen, W. He and X. Zu, J. Hazard. Mater., 155, 590 (2008).

    Article  CAS  Google Scholar 

  7. R. Janes, L. J. Knightley and C. J. Harding, Dyes Pigments, 62, 199 (2004).

    Article  CAS  Google Scholar 

  8. H. J. Choi and M. Kang, Int. J. Hydrogen Energ., 32, 3841 (2007).

    Article  CAS  Google Scholar 

  9. M. Moore, Environ. Int., 32, 967 (2006).

    Article  CAS  Google Scholar 

  10. S. B. Lovern and R. Klaper, Environ. Toxicol. Chem., 25, 1132 (2006).

    Article  CAS  Google Scholar 

  11. C. G. Daughton, Environ. Impact Asses. Rev., 24, 711 (2004).

    Article  Google Scholar 

  12. A. N. Jha, Mut. Res., 552, 1 (2004).

    CAS  Google Scholar 

  13. P. S. Huovinen, H. Penttila and M. R. Soimasuo, Int. J. Circumpolar Health, 59, 15 (2000).

    CAS  Google Scholar 

  14. M. Tedetti and R. Sempere, J. Photochem. Photobiol., 82, 389 (2006).

    Article  CAS  Google Scholar 

  15. D. P. Hader and R. P. Sinha, Mutat. Res., 571, 221 (2005).

    Google Scholar 

  16. J. F. Reeves, S. J. Davies, N. J. F. Dodd and A. N. Jha, Mutat. Res., 640, 113 (2008).

    CAS  Google Scholar 

  17. S. Raisuddin and A. N. Jha, Environ. Mol. Mutagen., 44, 83 (2004).

    Article  CAS  Google Scholar 

  18. N. C. Bols, R. C. Ganassin, D. J. Tom and L. E. Lee, Cytotechnology, 16, 159 (1994).

    Article  CAS  Google Scholar 

  19. T. Uchino, H. Tokunaga, M. Ando and H. Utsumi, Toxicol. Vitro, 16, 629 (2002).

    Article  CAS  Google Scholar 

  20. R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Redox Rep., 6, 319 (2001).

    Article  CAS  Google Scholar 

  21. C. Chen, P. Lei, H. Ji, W. Ma, J. Zhao, H. Hidaka and N. Serpone, Environ. Sci. Technol., 38, 329 (2004).

    Article  CAS  Google Scholar 

  22. T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry and B. Veronesi, Environ. Sci. Technol., 40, 4346 (2006).

    Article  CAS  Google Scholar 

  23. C. Cox, J. Pestic. Reform., 11, 2 (1991).

    Google Scholar 

  24. J. Gabbay, G. Borkow, J. Mishal, E. Magen, R. Zatcoff and Y. Shemer-Avni, J. Ind. Text., 35, 323 (2006).

    Article  CAS  Google Scholar 

  25. M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier and A. Kahru, Chemosphere, 71, 1308 (2008).

    Article  CAS  Google Scholar 

  26. M. Moore, Environ. Int., 32, 967 (2006).

    Article  CAS  Google Scholar 

  27. C. G. Daughton, Environ. Impact Asses. Rev., 24, 711 (2004).

    Article  Google Scholar 

  28. A. N. Jha, Mut. Res., 552, 1 (2004).

    CAS  Google Scholar 

  29. M. K. Yeo and M. Kang, Bull. Korean Chem. Soc., 29, 1179 (2008).

    Article  CAS  Google Scholar 

  30. W. Kimmel, S. Ballard, B. K. Ullman and T. Schilling, Dev. Dynam., 203, 253 (1995).

    CAS  Google Scholar 

  31. Z. Cao and Y. Li, Biochem. Biophys. Res. Commun., 292, 50 (2002).

    Article  CAS  Google Scholar 

  32. C. R. Wheeler, J. A. Salzman, N. M. Elsayed, S. T. Omaye and D.W. Korte, Anal. Biochem., 184, 193 (1990).

    Article  CAS  Google Scholar 

  33. W. H. Habig, M. J. Pabst and W. B. Jakoby, J. Biol. Chem., 249, 7130 (1974).

    CAS  Google Scholar 

  34. C. M. Wood, Target organ toxicity in marine and freshwater teleosts, vol. I, Taylor & Francis, London (2001).

  35. M. Grosell and C. M. Wood, J. Exp. Biol., 205, 1179 (2002).

    CAS  Google Scholar 

  36. D. F. Alderdice, Fish Physiol. Biochem., 11A, 163 (1988).

    Google Scholar 

  37. W. Möller, T. Hofer, A. Ziesenis and E. Karg, J. Heyder. Toxicol. Appl. Pharm., 182, 197 (2002).

    Article  CAS  Google Scholar 

  38. A. L. Lambert, J. B. Mangum, M. P. DELorme and J. I. Everitt, Toxicol. Sci., 72, 339 (2003).

    Article  CAS  Google Scholar 

  39. L. C. Renwick, K. Donaldson and A. Clouter, Toxicol. Appl. Pharm., 171, 119 (2001).

    Article  CAS  Google Scholar 

  40. R. Kohen and A. Nyska, Toxicol. Pathol., 6, 620 (2002).

    Article  CAS  Google Scholar 

  41. S. A. Kelly, C. M. Havrilla, T. C. Brady, K. H. Abramo and E. D. Levin, Environ. Health Perspect., 106, 375 (1998).

    Article  CAS  Google Scholar 

  42. L. E. Rikans and K. R. Hornbrook, Biochem. Biophys. Acta., 1362,116 (1997).

    CAS  Google Scholar 

  43. T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry and B. Veronesi, Environ. Sci. Technol., 40, 4346 (2006).

    Article  CAS  Google Scholar 

  44. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby, Appl. Environ. Microbiol., 65, 4094 (1999).

    CAS  Google Scholar 

  45. T. Ashikaga, M. Wada, H. Kobayashi, M. Mori, Y. Katsumura, H. Fukui, S. Kato, M. Yamaguchi and T. Takamatsu, Mutat. Res-Gen. Tox. Ent., 466, 1 (2000).

    Article  CAS  Google Scholar 

  46. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner and A. E. Nel, Nano Lett., 6, 1794 (2006).

    Article  CAS  Google Scholar 

  47. M. G. Jonz and C. A. Nurse, J. Comp. Neurol., 497, 817 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misook Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, MK., Kang, M. Effects of Cu x TiO y nanometer particles on biological toxicity during zebrafish embryogenesis. Korean J. Chem. Eng. 26, 711–718 (2009). https://doi.org/10.1007/s11814-009-0119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0119-5

Key words

Navigation