Skip to main content
Log in

Local resistance characteristics of highly concentrated coal-water slurry flow through fittings

  • Presented at the 7th Korea-China Clean Energy Technology Symposium
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The local resistance characteristics of high concentration coal-water slurry (CWS) flowing through three types of local fittings, namely the gradual contractions, sudden contractions and 90° horizontal elbows, were investigated at a transportation test facility. Results show that the local resistance loss of gradual contractions decreases as the contraction angle increases. When pipe diameter ratio varies little, local resistance loss of sudden contractions changes insignificantly. There is an optimal value of bend diameter ratio, at which the local resistance loss of horizontal elbows is the least. As Reynolds number increases, the resistance coefficients of all the three fittings first reduce and then stabilize, while the three pipes have different ratio of equivalent length to pipe diameter L e /D behaviors, that is, L e /D of the gradual contractions decreases gradually and then keeps stable; that of the sudden contractions diminishes at first and then increases, and that of the horizontal elbows increases linearly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Cen, Q. Yao and X. Y. Cao, Theory and application of combustion, flow, heat transfer, gasification of coal-water slurry, Zhe Jiang University, Publications, Hang Zhou (1997).

    Google Scholar 

  2. H. L. Yu, J. Z. Liu and X.W. Fan, Proc. Chin. Soc. Electr. Eng., 26, 80 (2006).

    CAS  Google Scholar 

  3. Y. C. Choi, T. J. Park and J. H. Kim, Korean J. Chem. Eng., 18, 493 (2001).

    Article  CAS  Google Scholar 

  4. D. J. Sung and S. H. Kang, Korean J. Chem. Eng., 14, 1 (1997).

    Article  CAS  Google Scholar 

  5. R. M. Turian, Stabi1ity, rheology and flow in pipes, bends, fittings, valves and venturi meters of concentrated non-newtonian. suspensions, Chicago, University of Illinois (1987).

    Google Scholar 

  6. S. G. Etema, Int. Comm. Heat Mass. Transfer., 31, 763 (2004).

    Article  Google Scholar 

  7. M. F Edwards, M. S. M. Jadallah and R. Smith, Chem. Eng. Res. Des., 1, 57 (1985).

    Google Scholar 

  8. M. R. Bandala-Rocha, R. C. Macedo and J. F. Ramirez Velez-Ruiz, Inf. Technol., 16, 73 (2005).

    CAS  Google Scholar 

  9. M. A. Polizelli, F. C. Menegalli and V. R. N. Telis, Braz. J. Chem. Eng., 20, 455 (2003).

    Article  CAS  Google Scholar 

  10. R. M. Turian, T.W. Ma and F. L. G. Hsu, Int. J. Multiphase. Flow., 24, 243 (1998).

    Article  CAS  Google Scholar 

  11. K. B. Tarun and K. D. Sudip, Pet. Sci. Eng., 55, 156 (2007).

    Article  Google Scholar 

  12. T. R. Javier, M. A. Polizelli and L. G. Ana, Can. J. Chem. Eng., 83, 186 (2005).

    Google Scholar 

  13. V. Fester, B. Mbiya and P. Slatter, Chem. Eng. J., (2008), in press.

  14. J. Marn and P. Ternik, Fluid Dyn. Res., 38, 295 (2006).

    Article  Google Scholar 

  15. D. R. Lee and S. Park, Korean J. Chem. Eng., 18, 277 (2001).

    Article  CAS  Google Scholar 

  16. W. R Dean, Philos. Mag., 20, 208 (1927).

    Google Scholar 

  17. W. R Dean, Philos. Mag., 30, 673 (1928).

    Google Scholar 

  18. G. F. C. Rogers and Y. R. Mayhew, Int. J. Heat Mass. Transfer., 7, 1207 (1994).

    Article  Google Scholar 

  19. R. P. Singh and P. J. Mishra, Chem. Eng. Japan, 13, 275 (1980).

    Article  CAS  Google Scholar 

  20. P. Chasik, L. Sunil Lee and K. Hoon, Int. J. Refrigeration, 30, 1168 (2007).

    Article  Google Scholar 

  21. D. V. Boger, R. Gupta and R. I. Tanner, J. Non-Newtonian Fluid. Mec., 4, 239 (1978).

    Article  Google Scholar 

  22. P. L. Spedding, E. Benard and N. M. Crawford, Exp. Thermal. Fluid Sci., 32, 827 (2007).

    Article  Google Scholar 

  23. P. L. Spedding and E. Benard, Exp. Thermal. Fluid Sci., 31, 761 (2007).

    Article  Google Scholar 

  24. S. Rosa and F. T. Pinho, Int. J. Heat. Fluid Flow., 27, 319 (2006).

    Article  Google Scholar 

  25. W. B. Hooper and J. J. Mcketta, Encyclopedia of Chem. Pro. Des., 39, 19 (1991).

    Google Scholar 

  26. S. R. Nam and H. S. Dae, Fuel, 74, 1313 (1995).

    Article  Google Scholar 

  27. T. Takami, K. Sudou and Y. Tomita, Bull. JSME, 29, 3755 (1986b).

    CAS  Google Scholar 

  28. S. L. Rathna, Proceedings of the fluid mechanical symposium, Indian Institute of Science, Bangalore, 378 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Chen, L. & Duan, Y. Local resistance characteristics of highly concentrated coal-water slurry flow through fittings. Korean J. Chem. Eng. 26, 569–575 (2009). https://doi.org/10.1007/s11814-009-0097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0097-7

Key words

Navigation