Skip to main content
Log in

Application of gain scheduling for modeling the nonlinear dynamic characteristics of NO x emissions from utility boilers

  • Presented at the 7th Korea-China Clean Energy Technology Symposium
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A hierarchical gain scheduling (HGS) approach is proposed to model the nonlinear dynamics of NO x emissions of a utility boiler. At the lower level of HGS, a nonlinear static model is used to schedule the static parameters of local linear dynamic models (LDMs), such as static gains and static operating conditions. According to upper level scheduling variables, a multi-model method is used to calculate the predictive output based on lower-level LDMs. Both static and dynamic experiments are carried out at a 360 MW pulverized coal-fired boiler. Based on these data, a nonlinear static model using artificial neural network (ANN) and a series of linear dynamic models are obtained. Then, the performance of the HGS model is compared to the common multi-model in predicting NO x emissions, and experimental results indicate that the proposed HGS model is much better than the multi-model in predicting NO x emissions in the dynamic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, Y. J. Ding, Z. S. Wu, L. Kong and T. Chou, Korean J. Chem. Eng., 24, 1118 (2007).

    Article  Google Scholar 

  2. S. P. Visona and B. R Stanmore, Chem. Eng. Sci., 53, 2013 (1998).

    Article  CAS  Google Scholar 

  3. C. F. M. Coimbra, J. L. T. Azevedo and M.G. Carvalho, Fuel, 73, 1128 (1994).

    Article  CAS  Google Scholar 

  4. H. Zhou, K. F. Cen and J. R. Fan, Energy, 29, 167 (2004).

    Article  CAS  Google Scholar 

  5. H. Zhou, K. F. Cen and J. B. Mao, Fuel, 80, 2163 (2001).

    Article  Google Scholar 

  6. A. J. Christopher and L. Roger, Proceedings of int’l joint power generation conference, Baltimore (1998).

  7. R. C. Booth and W. B. Roland, Proceedings of dynamic modeling control applications for industry workshop, Vancouver (1998).

  8. A. Laungphairojana, Boiler operation optimization for air pollution control, Vanderbilt Univ. Press (2003).

  9. S. Piche, B. Sayyar-Rodsari, D. Johnson and M. Gerules, Control Systems Magazine, 20, 53 (2000).

    Article  Google Scholar 

  10. W. J. Rugh and J. S. Shamma. Automatica, 36, 1401 (2000).

    Article  Google Scholar 

  11. K. J. Astrom and B. Wittenamrk, Adaptive control, Beijing, Science Press (2003).

  12. P. C. Chen and J. S. Shamma, Journal of Process Control, 14, 263 (2004).

    Article  CAS  Google Scholar 

  13. Z.Y. Huang, D. H. Li, X. Z. Jiang and L. M. Sun, Proceedings of the CSEE, 23, 191 (2003).

    Google Scholar 

  14. V. Petridis and A. Kehagias, Automatica, 34, 469 (1998).

    Article  Google Scholar 

  15. L. Chen and K. S. Narendra, Automatica, 37, 1245 (2001).

    Article  Google Scholar 

  16. Y. Fu and T. Chai, Automatica, 43, 1101 (2007).

    Article  Google Scholar 

  17. J. R. Wilson and S. S. Jeff, Automatica, 36, 1401 (2000).

    Article  Google Scholar 

  18. F. C. Eduardo and A. O. Vilma, Automatica, 38, 1247 (2002).

    Article  Google Scholar 

  19. D. A. Lawrence, Automatica, 37, 1041 (2001).

    Article  Google Scholar 

  20. J. D. Francis, S. K. Harpreet and S. S. James, Chem. Eng. Sci., 53, 2675 (1998).

    Article  Google Scholar 

  21. H. Al-Duwaish and W. Naeem, Proceedings of the 2001 IEEE international conference on control applications, Mexico City (2001).

  22. A. T. Johjns and D. F. Warne, Thermal power plant simulation and control, London, The Institution of Electrical Engineers (2003).

    Google Scholar 

  23. L. L. Fang and Z.Y. Gao, Proceedings of the CSEE, 23, 211 (2003).

    Google Scholar 

  24. D. H. Chung, J.B. Yang, D. S. Noh and W. B. Kim, Korean J. Chem. Eng., 16, 489 (1999).

    Article  CAS  Google Scholar 

  25. S. A. Kalogirou, Prog. Energy Combust. Sci., 29, 515 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Ding, Y., Zhang, Y. et al. Application of gain scheduling for modeling the nonlinear dynamic characteristics of NO x emissions from utility boilers. Korean J. Chem. Eng. 26, 534–541 (2009). https://doi.org/10.1007/s11814-009-0091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0091-0

Key words

Navigation