Skip to main content
Log in

Decomposition of acetic acid by advanced oxidation processes

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Decomposition of acetic acid, known as a non-degradable organic compound, was conducted for several advanced oxidation processes such as TiO2-UV-H2O2, Fe2+-H2O2-UV, UV-H2O2 and TiO2-UV system. Acetic acid was efficiency decomposed within 120 minutes of UV radiation under the initial concentration of 500 ppm. The initial chemical oxygen demands (COD cr ) tended to increase as H2O2 was added in most reactions. However, the initial COD cr was not increased as H2O2 was consumed for the oxidation of iron salt in the photo-Fenton oxidation process. COD cr and concentration of acetic acid rapidly decreased as the mole ratio of hydrogen peroxide increased owing to rapid decomposition of the reactant at the beginning of reaction. All reactions show first order pseudo reaction rate. The COD cr removal rate and the decomposition efficiency of acetic acid were fastest in the UV-H2O2 process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. H. Fenton, J. Chem. Soc. (Brit), 65, 892 (1894).

    Google Scholar 

  2. Y.O. Kim, H.U. Nam, Y.R. Park, J.H. Lee, T. J. Park and T.H. Lee, Korean J. Chem. Eng., 21, 801 (2004).

    Article  CAS  Google Scholar 

  3. K. P. Yu and W. M. Lee, Applied Catalysis B: Environmental, 75, 29 (2007).

    Article  CAS  Google Scholar 

  4. C. Wang, J. Li, G. Mele, G. M. Yang, F. X. Zhang, L. Palmisano and G. Vaspollo, Applied Catalysis B: Environmental, 76, 218 (2007).

    Article  CAS  Google Scholar 

  5. E. Evgenidous, E. Bizani, C. Christophoridis and K. Fytianos, Chemosphere, 68, 1877 (2007).

    Article  Google Scholar 

  6. J. C. Lee, M. S. Kim, C. K. Kim, C. H. Chung, S.M. Cho, G.Y. Han, K. J. Yoon, and B.W. Kim, Korean J. Chem. Eng., 20, 862 (2003).

    Article  CAS  Google Scholar 

  7. K. Fajerwerg, A. Foussard, A. Perrad and H. Debellefontaine, Water Sci. Tech., 35, 103 (1997).

    Article  CAS  Google Scholar 

  8. R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krutzler, S. Malato and P. Maletzky, Catal. Today, 53, 131 (1999).

    Article  CAS  Google Scholar 

  9. J. P. Shirmann and S.Y. Delavarenn, Hydrogen peroxide in organic chemistry, Documentation Industrielle, Paris (1979).

    Google Scholar 

  10. X. R. Xu, Z.Y. Zhao, X.Y. Li and J. D. Gu, Chemosphere, 55, 73 (2004).

    Article  CAS  Google Scholar 

  11. R. J. Watts, J. Howsawkeng and A. L. Tee, J. Env. Eng., 131, 1114 (2005).

    Article  CAS  Google Scholar 

  12. D. K. Oh, Ph. D. Thesis, Inha Univ. (1993).

  13. N. H. Ince and I. G. Apikyan, Wat. Res., 34, 4169 (2000).

    Article  CAS  Google Scholar 

  14. A. Danio, J. Disdier, C. Guillard and J. R. Nicole, J. Photochem. Photobio.A: Chem., 190, 135 (2007).

    Article  Google Scholar 

  15. R.W. Matthews, J. Phys. Chem., 92, 6853 (1988).

    Article  CAS  Google Scholar 

  16. S. H. Lee, B. J. Cho, S. M. Lee and Y.W. Kim, J. of KSEE, 24, 467 (2002).

    Google Scholar 

  17. Y.O. Kim, H.U. Nam, Y.R. Park, J.H. Lee, T. J. Park and T.H. Lee, Korean J. Chem. Eng., 21, 801 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Hwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.Y., Lee, I.H. Decomposition of acetic acid by advanced oxidation processes. Korean J. Chem. Eng. 26, 387–391 (2009). https://doi.org/10.1007/s11814-009-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0065-2

Key words

Navigation