Skip to main content
Log in

Prediction of the surface tension of binary systems based on the partial least squares method

  • Process Systems Engineering, Process Safety, Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To predict the surface tension of binary liquid systems, an empirical model is proposed using the partial least squares (PLS) based on the multivariate statistical analysis method. Required parameters for the PLS method to predict the surface tension of binary systems are composed of the thermophysical properties of only pure substances such as critical temperature, critical pressure, critical volume, molar volume, viscosity and vapor pressure for input data block (X) and the reported experimental surface tension data for output data block (Y). The data set for the experimental surface tension of binary liquid systems is divided into the training set for regression and the test set for predicting. An average relative error (%) results of regression and prediction indicate that the PLS method can be a useful tool for predicting the surface tension of liquid binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Miller and P. Neogi, Interfacial phenomena: equilibrium and dynamic effects, Marcel Dekker, Inc., New York (1985).

    Google Scholar 

  2. J. Lykema, G. J. Fleer, J. M. Kleijn, F. A. M. Leermakers, W. Norde and T. Van Vliet, Fundamentals of interface and colloid science, volume III: Liquid-fluid interfaces, Academic Press (2000).

  3. P. Geladi and B. R. Kowalski, Analytica Chemica Acta., 185, 1 (1986).

    Article  CAS  Google Scholar 

  4. L. I. Rolo, A. I. Caco, A. J. Queimada, I. M. Marrucho and J. A. P. Coutinho, J. Chem. Eng. Data, 47, 1442 (2002).

    Article  CAS  Google Scholar 

  5. H. Kahl, T. Wadewitz and J. Winkelmann, J. Chem. Eng. Data, 48, 1500 (2003).

    Article  CAS  Google Scholar 

  6. L. F. Ramirez-Verduzco, A. Romero-Martinez and A. Trejo, Fluid Phase Equilibria, 246, 119 (2006).

    Article  CAS  Google Scholar 

  7. T. Suzuki, K. Ohtaguchi and K. Koide, Computers & Chemical Engineering, 20(2), 161 (1996).

    Article  CAS  Google Scholar 

  8. S.Y. Kim, B. Lee, C. B. Chung and S. H. Choi, Journal of the Korean Institute for Gas, 10(4), 29 (2006).

    CAS  Google Scholar 

  9. J. Aguil-Hernandez, I. Hernandez and A. Trejo, International Journal of Thermophysics, 16(1), 45 (1995).

    Article  Google Scholar 

  10. H. Kahl, T. Wadewitz and J. Winkelmann, J. Chem. Eng. Data, 48, 580 (2003).

    Article  CAS  Google Scholar 

  11. A. J. Queimada, I. M. Marrucho and J. A. P. Coutinho, Fluid Phase Equilibria, 183–184, 229 (2001).

    Article  Google Scholar 

  12. P. Bastien, V. E. Vinzi and M. Tenehaus, Computational Statistics & Data Analysis, 48, 17 (2005).

    Article  Google Scholar 

  13. A. J. Burnham, J. F. MacGregor and R. Viveros, Chemometrics and Intelligent Laboratory Systems, 48, 167 (1999).

    Article  CAS  Google Scholar 

  14. S. Wold, J. Trygg, A. Berglund and H. Antti, Chemometrics and Intelligent Laboratory Systems, 58, 131 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bomsock Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.Y., Kim, S.S. & Lee, B. Prediction of the surface tension of binary systems based on the partial least squares method. Korean J. Chem. Eng. 26, 349–353 (2009). https://doi.org/10.1007/s11814-009-0058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0058-1

Key words

Navigation