Skip to main content
Log in

Iterative identification of temperature dynamics in single wafer rapid thermal processing

  • Process Systems Engineering, Process Safety, Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As the standard size of silicon wafers grows and performance specifications of integrated circuits become more demanding, a better control system to improve the processing time, uniformity and repeatability in rapid thermal processing (RTP) is needed. Identification and control are complicated because of nonlinearity, drift and the time-varying nature of the wafer dynamics. Various physical models for RTP are available. For control system design they can be approximated by diagonal nonlinear first order dynamics with multivariable static gains. However, these model structures of RTP have not been exploited for identification and control. Here, an identification method that iteratively updates the multivariable static gains is proposed. It simplifies the identification procedure and improves the accuracy of the identified model, especially the static gains, whose accurate identification is very important for better control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. F. Edgar, S.W. Butler, W. J. Campbell, C. Pfeiffer, C. Bode and S. B. Hwang, Automatica, 36, 1567 (2000).

    Article  Google Scholar 

  2. J.Y. Choi and H. M. Do, IEEE Trans. Semiconductor Manufacturing, 14, 1 (2001).

    Article  Google Scholar 

  3. M. Cho, Y. Lee, S. Joo and K. S. Lee, IEEE Trans. Semiconductor Manufacturing, 18, 430 (2005).

    Article  Google Scholar 

  4. J.Y. Choi, H. M. Do and H. S. Choi, IEEE Trans. Semiconductor Manufacturing, 16, 621 (2003).

    Article  Google Scholar 

  5. K. S. Balakrishnan and T. F. Edgar, Thin Solid Films, 365, 322 (2000).

    Article  CAS  Google Scholar 

  6. E. Dasssu, B. Grosman and D. R. Lewin, Comp. Chem. Eng., 30, 686 (2006)

    Article  Google Scholar 

  7. C. J. Huang, C. C. Yu and S. H. Shen, Automatica, 36, 705 (2000).

    Article  Google Scholar 

  8. C. D. Schaper, Y. M. Cho and T. Kailath, Appl. Phys. A, 54, 317 (1992).

    Article  Google Scholar 

  9. A. Kersch and T. Schafbauer, Thin Solid Films, 365, 307 (2000).

    Article  CAS  Google Scholar 

  10. S. J. Kim and Y. M. Cho, Control Engineering Practice, 10, 1199 (2003).

    Article  Google Scholar 

  11. W. Cho, T. F. Edgar and J. Lee, Ind. Eng. Chem. Research, 47, 4791 (2008).

    Article  CAS  Google Scholar 

  12. J. Lee, W. Cho and T. F. Edgar, I&EC Research, 37, 1018 (1998).

    CAS  Google Scholar 

  13. W. Cho, Temperature control and modeling of the rapid thermal processing chamber, PhD Dissertation, University of Texas at Austin (2005).

  14. K. S. Lee, J. Lee, I. Chin, J. Choi and J.H. Lee, Ind. Eng. Chem. Research, 40, 1661 (2001).

    Article  CAS  Google Scholar 

  15. S. A. Campbell, K. H. Ahn, K. L. Knutson, B.Y. H. Liu and J. D. Leighton, IEEE Trans. Semiconductor Manufacturing, 4, 14 (1991).

    Article  Google Scholar 

  16. W. Cho, T. F. Edgar and J. Lee, Korean J. Chem. Eng., 23, 171 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jietae Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, W., Edgar, T.F. & Lee, J. Iterative identification of temperature dynamics in single wafer rapid thermal processing. Korean J. Chem. Eng. 26, 307–312 (2009). https://doi.org/10.1007/s11814-009-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0053-6

Key words

Navigation