Korean Journal of Chemical Engineering

, Volume 26, Issue 1, pp 64–71 | Cite as

Separation and characterization of bitumen from Athabasca oil sand

  • Songhun Yoon
  • Sharad Durgashanker Bhatt
  • Wonkyu Lee
  • Heung Yeoun Lee
  • Soon Yong Jeong
  • Jin-Ook Baeg
  • Chul Wee LeeEmail author
Catalysis, Reaction Engineering, Industrial Chemistry


Separation and chemical analysis was investigated using bitumen samples from Athabasca oil sand in Alberta. Fractionation according to solubility and polarity has been used to separate bitumen into its fractions. The solvent de-asphaltening was performed by n-pentane solvent (solubility fractionation), and the polarity fractionation using Fuller’s earth allows maltene to separate into SARA components (saturates, aromatics, resins and asphaltenes). The SARA components are analyzed comprehensively using elemental analysis (EA), Fourier-transformed infrared (FTIR), ultraviolet-visible spectroscopy (UV-vis), high performance chromatography (HPLC) and thermogravimetric analysis (TGA). EA (C, H, N, S), heavy metals (Ni, V) concentrations, FT-IR and UV-vis tests provided the explanation of chemical composition. From IR spectra, maltene and saturates/aromatics (sat/aro) contained more aliphatic compounds than resin or asphaltene. Also, IR spectrum of sat/aro was similar to crude oil and VGO (vacuum gas oil). Different UV signal data clearly indicates the contribution of aromatic constituents in the fractions. Using optimized analysis conditions of HPLC, we successfully separated the peaks for bitumen and its fractions. The characteristic peak pattern of SARA (saturates, aromatics, resins, asphaltenes) fractions was observed, and also the peak pattern of sat/aro was similar to that of crude oil and VGO. However, TGA results revealed that thermal behavior for sat/aro was similar to that of crude oil but different from that of VGO. Also, from the comparison between decomposition temperature of TGA and boiling point, their correspondence was found.

Key words

Oil Sand Separation Bitumen Heavy Oil Spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Gowdy and R. Juliá, Energy, 32, 1448 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Parikh, P. Purohit and P. Maitra, Energy, 32, 1825 (2007).CrossRefGoogle Scholar
  3. 3.
    A. D. Sagar, Energy Policy, 33, 1367 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Söderbergh, F. Robelius and K. Aleklett, Energy Policy, 35, 1931 (2007).CrossRefGoogle Scholar
  5. 5.
    S. Zhao, L. S. Kotlyar, J. R. Woods, B. D. Sparks, K. Hardacre and K. H. Chung, Fuel, 80, 1155 (2001).CrossRefGoogle Scholar
  6. 6.
    D. Ferdous, A. K. Dalai and J. Adjaye, Fuel, 85, 1286 (2006).CrossRefGoogle Scholar
  7. 7.
    J. Chang, Y. Fu, Y. Shibata, M. Yoshimoto, K. Fujimoto and N. Tsubaki, Fuel, 84, 1661 (2005).Google Scholar
  8. 8.
    S. Zhao, B. D. Sparks, L. S. Kotlyar and K. H. Chung, Catalysis Today, 125, 122 (2007).CrossRefGoogle Scholar
  9. 9.
    N. H.G. Rahmani, T. Dabros and J. H. Masliyah, Journal of Colloid and Interface Science, 285, 599 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Zhao, Z. Xu, C. Xu, K. H. Chung and R. Wang, Fuel, 84, 635 (2005).CrossRefGoogle Scholar
  11. 11.
    S. Wik, B. D. Sparks, S. Ng, Y. Tu, Z. Li, K. H. Chung and L. S. Kotlyar, Fuel, 87, 1394 (2008).CrossRefGoogle Scholar
  12. 12.
    O. Dai and K. H. Chung, Fuel, 75, 220 (1996).CrossRefGoogle Scholar
  13. 13.
    E. Furimsky and P. J. Champagne, Fuel Processing Technology, 6, 269 (1982).CrossRefGoogle Scholar
  14. 14.
    S. Zhao, L. S. Kotlyar, J. R. Woods, B. D. Sparks, J. Gao, J. Kung and K. H. Chung, Fuel, 81, 737 (2002).CrossRefGoogle Scholar
  15. 15.
    J. M. Yu, S. H. Huang and M. Radosz, Fluid Phase Equilibria, 93, 353 (1994).CrossRefGoogle Scholar
  16. 16.
    C. Champmartin, P. Simon, P. Delsaut, M. Dorotte and B. Bianchi, Journal of Chromatography A, 1142, 164 (2007).CrossRefGoogle Scholar
  17. 17.
    J. R. Woods, J. Kung, G. Pleizier, L. S. Kotlyar, B. D. Sparks, J. Adjaye and K. H. Chung, Fuel, 83, 1907 (2004).CrossRefGoogle Scholar
  18. 18.
    T. P. Shi, Y. X. Hu, Z. M. Xu, T. Su and R. A. Wang, Ind. Eng. Chem. Res., 36, 3988 (1997).CrossRefGoogle Scholar
  19. 19.
    H. Alboudwarej, J. Beck, W. Y. Svrcek, H.W. Yarranton and K. Akbarzadeh, Energy & Fuels, 16, 462 (2002).CrossRefGoogle Scholar
  20. 20.
    S. Zhao, Z. Xu, C. Xu, K. H. Chung and R. Wang, Fuel, 84, 635 (2005).CrossRefGoogle Scholar
  21. 21.
    C. J. Pouchert, The Aldrich library of infrared spectra, 2nd ed., Aldrich Chemical Company Inc., Wisconsin (1975).Google Scholar
  22. 22.
    R. J. Keller, The Sigma library of FTIR spectra, Sigma Chemical Company St. Louis, 1st ed, Missouri (1986).Google Scholar
  23. 23.
    O. Abbas, C. Rébufa, N. Dupuy, A. Permanyer, J. Kister and D. A. Azevedo, Fuel, 85, 2653 (2006).CrossRefGoogle Scholar
  24. 24.
    I. N. Evdokimov, N.Y. Eliseev and B. R. Akhmetov, J. Petroleum Science and Engineering, 37, 135 (2003).CrossRefGoogle Scholar
  25. 25.
    K. Baginska and I. Gawel, Fuel Processing Technology, 85, 1453 (2004).CrossRefGoogle Scholar
  26. 26.
    K. C. Khulbe, R. S. Manna, A. M. Lamarche, G. Lamarche and J. A. MacPhee, Fuel Processing Technology, 35, 303 (1993).CrossRefGoogle Scholar
  27. 27.
    K. C. Khulbe, R. S. Mann, A. M. Lamarche, G. Lamarche and J. A. MacPhee, Fuel Processing Technology, 41, 1 (1994).CrossRefGoogle Scholar
  28. 28.
    M. Benbouzid and S. Hafsi, Fuel, 87, 1585 (2008).CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Songhun Yoon
    • 1
  • Sharad Durgashanker Bhatt
    • 1
  • Wonkyu Lee
    • 2
  • Heung Yeoun Lee
    • 2
  • Soon Yong Jeong
    • 1
  • Jin-Ook Baeg
    • 1
  • Chul Wee Lee
    • 1
    Email author
  1. 1.Advanced Chemical Technology DivisionKorea Research Institute of Chemical Technology (KRICT)DaejeonKorea
  2. 2.Korea National Oil CorporationPetroleum Technology InstituteAnyangKorea

Personalised recommendations