Skip to main content
Log in

Performance of hollow fiber supported liquid membrane on the extraction of mercury(II) ions

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction and recovery or stripping of mercury ions from chloride media using microporous hydrophobic hollow fiber supported liquid membranes (HFSLM) has been studied. Tri-n-octylamine (TOA) dissolved in kerosene was used as an extractant. Sodium hydroxide was used as a stripping solution. The transport system was studied as a function of several variables: the concentration of hydrochloric acid in the feed solution, the concentration of TOA in the liquid membrane, the concentration of sodium hydroxide in the stripping solution, the concentration of mercury ions in the feed solution and the flow rates of both feed and stripping solutions. The results indicated that the maximum percentages of the extraction and recovery of mercury ions of 100% and 97% were achieved at the concentration of hydrochloric acid in the feed solution of 0.1 mol/l, the concentration of TOA at 3% v/v, the concentration of sodium hydroxide at 0.5 mol/l and the flow rates of the feed and stripping solutions of 100 ml/min. However, the concentration of mercury ions from 1–100 ppm in the feed solution had no effect on the percentages of extraction and recovery of mercury ions. Thus, these results have identified that the hollow fiber supported liquid membrane process has high efficiency on both the extraction and recovery of mercury (II) ions. Moreover, the mass transfer coefficients of the aqueous phase (k i ) and membrane or organic phase (k m ) were calculated. The mass transfer coefficients of the aqueous phase and organic phase are 0.42 and 1.67 cm/s, respectively. The mass transfer coefficient of the organic phase is higher than that of the aqueous phase. Therefore, the mass transfer controlling step is the diffusion of the mercury ions through the film layer between the feed solution and the liquid membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chester Rail, Groundwater contamination, volume I: Contamination, sources, & hydrology, Lancaster, Pennsylvania: Technomic Publishing Company, Inc. (2000).

    Google Scholar 

  2. G. Schultz, Separation Techniques with Supported Liquid Membrane, 68, 191 (1988).

    Google Scholar 

  3. T. Hano, M. Matsumoto, S. Uenoyama, T. Ohtake, Y. Kawano and S. Miura, Separation of Lactic Acid from Fermented Broth by Solvent Extraction, 3, 321 (1993).

    CAS  Google Scholar 

  4. R. Basu and K. K. Sirkar, AIChE J., 37, 383 (1991).

    Article  CAS  Google Scholar 

  5. R. Basu, R. Prasad and K. K. Sirkar, AIChE J., 36, 450 (1998).

    Article  Google Scholar 

  6. C. Yun, R. Prasad and K. Sirkar, Ind. Eng. Chem. Res., 31, 1709 (1992).

    Article  CAS  Google Scholar 

  7. R. Prasad and K. K. Sirkar, J. Membr. Sci., 47, 235 (1989).

    Article  CAS  Google Scholar 

  8. R. Basu and K. K. Sirkar, J. Membr. Sci., 75, 131 (1992).

    Article  CAS  Google Scholar 

  9. N. S. Rathore, J.V. Sonawane, A. Kumar, A. K. Venugopalan, R. K. Singh, D.D. Bajpai and J. P. Shukla, J. Membr. Sci., 189, 119 (2001).

    Article  CAS  Google Scholar 

  10. M. E. Campderros and J. Marchese, J. Membr. Sci., 164(1–2), 195 (2000).

    Google Scholar 

  11. A. Gherrou and H. Kerdjoudi, Desalination, 144, 231 (2002).

    Article  CAS  Google Scholar 

  12. C. Porter Mark, Handbook of industrial technology membrane, Noyes publications (1990).

  13. A. Kiani, P. R. Bhave and K. K. Sirkar, J. Membr. Sci., 20, 231 (1984).

    Article  Google Scholar 

  14. L. Dahuron and E. L. Cussler, AIChE J., 34, 130 (1988).

    Article  CAS  Google Scholar 

  15. W. Patthaveekongka, N. Vijitchalermpong and U. Pancharoen, Korean J. Chem. Eng., 20, 1092 (2003).

    Article  Google Scholar 

  16. U. Pancharoen, P. Ramakul and W. Patthaveekongka, J. Ind. Eng. Chem., 11, 926 (2005).

    Google Scholar 

  17. P. Ramakul, W. Pattaweekongka and U. Pancharoen, Korean J. Chem. Eng., 23, 85 (2006).

    Article  Google Scholar 

  18. P. Ramakul, W. Pattaweekongka and U. Pancharoen, J. Chin. Inst. Chem. Engrs., 36, 1 (2005).

    Google Scholar 

  19. P. Ramakul, K. Nakararueng and U. Pancharoen, Korean J. Chem. Eng., 21, 1212 (2004).

    Article  Google Scholar 

  20. T. Prapasawat, P. Ramakul, C. Satayaprasert, U. Pancharoen and A.W. Lothongkum, Korean J. Chem. Eng., 25, 158 (2008).

    Article  CAS  Google Scholar 

  21. U. Pancharoen, P. Ramakul, W. Patthaveekongka and M. Hornec, J. Ind. Eng. Chem., 12, 5 (2006).

    Google Scholar 

  22. P. Ramakul and U. Pancharoen, Korean J. Chem. Eng., 20, 724 (2003).

    Article  Google Scholar 

  23. S. F. Sheng, M. Hideto and T. Masaaki, Sep. and Purifi. Tech., 36, 17 (2004).

    Article  Google Scholar 

  24. O. Loiacono, E. Drioli and R. Molinari, J. Membr. Sci., 28, 123 (1986).

    Article  CAS  Google Scholar 

  25. P. Danesi, J. Membr. Sci., 20, 231 (1984).

    Article  CAS  Google Scholar 

  26. A. Kumar, R. Haddad, G. Benzal, R. Ninou and A.M. Sastre, J. Membr. Sci., 174, 1 (2000).

    Article  Google Scholar 

  27. R.B. Bird, W. E. Stewart and E.N. Lightfoot, Transport phenomena, John Wiley & Sons, New York (1960).

    Google Scholar 

  28. Hoechst Celanese Corporation, Operating manual, Laboratory Liquid/Liquid Extraction System, 22 (1995).

  29. E. L. Cussler, Diffusion mass transfer in fluid systems, Cambridge University Press, USA (1997).

    Google Scholar 

  30. R.B. Bird, W. E. Stewart and E.N. Lightfoot, Transport phenomena, 2nd Ed., John Wiley & Sons, Inc., New York, 529 (2002).

    Google Scholar 

  31. C.K. John and F. P. Keith, Chemistry & chemical reactivity, 2nd Ed., Saunders College Publishing, the United States of America, 569 (1991).

    Google Scholar 

  32. M. Rovira and A.M. Sastre, J. Membr. Sci., 149, 241 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ura Pancharoen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uedee, E., Ramakul, P., Pancharoen, U. et al. Performance of hollow fiber supported liquid membrane on the extraction of mercury(II) ions. Korean J. Chem. Eng. 25, 1486–1494 (2008). https://doi.org/10.1007/s11814-008-0245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0245-5

Key words

Navigation