Skip to main content
Log in

Nitrifying bacterial communities and its activities in aerobic biofilm reactors under different temperature conditions

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Tests were performed to investigate nitrifying bacterial communities and activities in aerobic biofilm reactors with different temperature conditions, denaturing gradient gel electrophoresis (DGGE) based on polymerase chain reaction targeting 16S rRNA and amoA gene, fluorescence in situ hybridization (FISH) and dehydrogenase activity (DHA). T1, T2 and T3 reactors operated at different temperatures (5, 10 and 30 °C, respectively) were set up in the thermostat and acclimated. Nitrification was considerably limited in T1 and T2 reactors. DGGE revealed specific genera of ammonium-oxidizing bacteria (AOB) and some Nitrosomonas genera endured at the low temperatures. FISH revealed a decreased distribution ratio between AOB and nitrate-oxidizing bacteria at 5 °C, and showed that the decrease of AOB also affected the nitrification failure in the aerobic biofilm reactor. The mean attached biomass of the T1, T2 and T3 reactors was 69.6, 80.6 and 112.9 mg/L, respectively, and the 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride dehydrogenase activity of the respective reactors was 73.6, 87.4 and 134.2 mgO *2 /g VSS/day. The results demonstrate that a low temperature condition in an aerobic biofilm reactor decreases the attached biomass, distribution ratio and activity of nitrifying bacteria, and produces a change in the composition of the AOB species, which results in the failure of nitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Water Environment Federation, Wastewater treatment plant design, Alexandria, VA, 6-1–6-3 (2003).

  2. G. Tchbanoglous, F. L. Burton and H.D. Stensel, Wastewater engineering: treatment and reuse, 4th ed., McGraw-Hill, NY, 661–665 (2003).

    Google Scholar 

  3. T. J. Park, K. H. Lee, D. S. Kim and C.W. Kim, Wat. Sci. Tech., 34(10), 9 (1996).

    Article  CAS  Google Scholar 

  4. S. Zhu and S. Chen, Aquacult. Eng., 26, 221 (2002).

    Article  Google Scholar 

  5. T. J. Park, K. H. Lee and J. H. Lee, Korean J. Chem. Eng., 15, 9 (1998).

    Article  Google Scholar 

  6. R. Nogueira, V. Lazarova, J. Manem and L. F. Melo, Wat. Sci. Tech., 37(4), 189 (1998).

    Article  Google Scholar 

  7. P. Antoniou, J. Hamilton, B. Koopman, R. Jain, B. Holloway, G. Lyberatos and S. A. Svoronos, Wat. Res., 24(1), 97 (1990).

    Article  CAS  Google Scholar 

  8. Th. Willke and K.D. Vorlop, Progress in Biotech., 11, 718 (1996).

    Article  CAS  Google Scholar 

  9. F. Fdz-Polanco, E. Méndez and S. Villaverde, Wat. Sci. Tech., 32(8), 227 (1995).

    Article  CAS  Google Scholar 

  10. C.N. Sawyer, P. L. McCarty and G. F. Parkin, Chemistry of environmental engineering, 4th ed., McGraw-Hill, NY, 658–659 (1994).

    Google Scholar 

  11. H. Ødegaard and B. Rusten, Norwegian experiences with nitrogen removal in a moving bed biofilm reactor, EWPCA-ISWA Symposium, Munchen(Germany), 11–14 May, 205–221 (1993).

  12. V. Lazarova, V. Pierzo, D. Fontviell and J. Manem, Wat. Sci. Tech., 29, 345 (1994).

    CAS  Google Scholar 

  13. S.H. Hur, J. J. Park, Y. J. Kim, J. C. Yu, I.G. Byun, T.H. Lee and T. J. Park, Korean J. Chem. Eng., 24, 93 (2007).

    Article  CAS  Google Scholar 

  14. T. Imat, T. Kusuda and H. Furumat, Kinetic study and mathematical modeling of biofilm in an anaerobic fluidized bed, In Proc. 2nd Int. Specialized Conf. on Biofilm Reactors, 463–470, Paris, France (1993).

  15. N.R. Lazarova, J. Manem and L. Melo, Wat. Sci. Tech., 37(4), 189 (1998).

    Article  CAS  Google Scholar 

  16. Y. Liu and B. Capdeville, Wat. Res., 30(7), 1645 (1996).

    Article  CAS  Google Scholar 

  17. M. Wagner, G. Rath, R. Amann, H. P. Koops and K.H. Schleifer, Syst. Appl. Microbiol., 18, 251 (1995).

    CAS  Google Scholar 

  18. N. R. Pace, Science, 276, 734 (1997).

    Article  CAS  Google Scholar 

  19. V. Torsvik, L. Øvreas and T. F. Thingstad, Science, 296, 1064 (2002).

    Article  CAS  Google Scholar 

  20. I. Cases and V. de Lorenzo, Environ. Microbiol., 4, 623 (2002).

    Article  CAS  Google Scholar 

  21. G. Muyzer, S. Hottentrager, A. Teske and C. Wawer, Denaturing Gradient Gel Electrophoresis of PCR-Amplified 16S rDNA — A New Molecular Approach to Analyze the Genetic Diversity of Mixed Microbial Communities, Molecular Microbial Ecology Manual 3.4.4. (1996).

  22. G. Muyzer, Curr. Opin. Microbiol., 2, 317 (1999).

    Article  CAS  Google Scholar 

  23. J.H. Rotthauwe, K. P. Witzel and W. Liesack, Appl. Environ. Microbiol., 63, 4704 (1997).

    CAS  Google Scholar 

  24. G.A. Kowalchuk, P. L. E. Bodelier, G.H. J. Heilig, J.R. Stephen and H. J. Laanbroek, FEMS Microbiol. Ecol., 27, 339 (1998).

    Article  CAS  Google Scholar 

  25. C. D. Sinigalliano, D. N. Kuhn and R. D. Jones, Appl. Environ. Microbiol., 61, 2702 (1995).

    CAS  Google Scholar 

  26. M. Wagner, M. Schmid, S. Juretschko, K.H. Trebesius, A. Bubert, W. Goebel and K.H. Schleifer, FEMS Microbiol. Lett., 160, 159 (1998).

    Article  CAS  Google Scholar 

  27. C. Wawer, M.M. Jetten and G. Muyer, Appl. Environ. Microbiol., 63, 4360 (1997).

    CAS  Google Scholar 

  28. U. Purkhold, A. Pommerening-Rosor, S. Juretschko, M. C. Schmid, H. P. Koops and M. Wagner, Appl. Environ. Microbiol., 66, 5368 (2000).

    Article  CAS  Google Scholar 

  29. D. J. Kim, D. I. Lee and J. Keller, Bioresource Technol., 97, 459 (2006).

    Article  CAS  Google Scholar 

  30. A. Schramm, D. De Beer, M. Wagner and R. Amann, Appl. Environ. Microbiol., 64(9), 3480 (1998).

    CAS  Google Scholar 

  31. A. Jang, P. L. Bishop, S. Okabe, S.G. Lee and I. S. Kim, Wat. Sci. Tech., 47(1), 49 (2002).

    Google Scholar 

  32. H. Yang, Z. Jiang, S. Shi and W. Z. Tang, Ecotoxicology and Environmental Safety, 53, 416 (2002).

    Article  CAS  Google Scholar 

  33. G. Bitton and B. Koopman, Appl. Environ. Microbiol., 43, 964 (1982).

    Google Scholar 

  34. B. Koopman, G. Bitton, C. Logue, J. M. Bossart and J. M. Lopez, Validity of tetrazolium reduction assays for assessing toxic inhibition of filamentous bacteria in activated sludge, In Toxicity Screening Procedures using Bacterial Systems, 147–162, NY, USA (1984).

  35. J. Awong, G. Bitton and B. Koopman, Wat. Res., 19, 917 (1985).

    Article  CAS  Google Scholar 

  36. C.W. Kim, B. Koopman and G. Bitton, Wat. Res., 28(5), 1117 (1994).

    Article  CAS  Google Scholar 

  37. Water Environment Federation, Biological and chemical systems for nutrient removal, Alexandria, VA, 69–73 (1998).

  38. M.H. Nicolaisen and N. B. Ramsing, J. of Microbiol. Metho., 50, 189 (2002).

    Article  CAS  Google Scholar 

  39. Y. Suzuki, T. Yoda, A. Ruhul and W. Sugiura, J. Biol. Chem., 276(12), 9059 (2001).

    Article  CAS  Google Scholar 

  40. H. Daims, A. Bruhl, R. Amann, K.-H. Schleifer and M. Wagner, Systematic and Applied Microbiology, 22(3), 434 (1999).

    CAS  Google Scholar 

  41. B.K. Mobarry, M. Wagner, V. Urbain, B. E. Rittmann and D.A. Stahl, Applied and Environmental Microbiology, 62(6), 2156 (1996).

    CAS  Google Scholar 

  42. H. Daims, P.H. Nielsen, J. L. Nielsen, S. Juretschko and M. Wagner, Water science and technology, 41(4–5), 85 (2000).

    CAS  Google Scholar 

  43. M. Wagner, G. Rath, H.-P. Koops, J. Flood and R. Amann, Water Science and Technology, 34(1), 237 (1996).

    Article  CAS  Google Scholar 

  44. S.M. Lee, J. Y. Jung and Y. C. Chung, Biotech. Letters, 22, 991 (2000).

    Article  CAS  Google Scholar 

  45. J.H. Lim, Analysis of nitrification in biofilm using biochemical methods, PhD thesis, Department of environmental engineering, Pusan National University, Korea (2003).

    Google Scholar 

  46. M.H. Nicolaisen and N. B. Ramsing, J. Microbiol. Methods, 50, 189 (2002).

    Article  CAS  Google Scholar 

  47. M. Wagner and A. Loy, Biotechnology, 13, 218 (2002).

    CAS  Google Scholar 

  48. C. L. Laia and G. G. Jesus, J. Microbiol. Metho., 57(1), 69 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Joo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JJ., Byun, IG., Park, SR. et al. Nitrifying bacterial communities and its activities in aerobic biofilm reactors under different temperature conditions. Korean J. Chem. Eng. 25, 1448–1455 (2008). https://doi.org/10.1007/s11814-008-0238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0238-4

Key words

Navigation