Skip to main content
Log in

Preparation, electrochemical properties, and cycle mechanism of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new type of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material was synthesized at 350 °C in an air atmosphere by a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−x FeO2-Li x MnO2 ((Fe+Ni+Mn)=0.8) with much reduced impurity peaks. It was composed of many large particles of about 500–600 nm and small particles of about 100–200 nm, which were distributed among the larger particles. The Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell showed a high initial discharge capacity above 192 mAh/g, which was higher than that of the parent Li/Li1−x FeO2-Li x MnO2 (186 mAh/g). This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles. We suggest a unique role of doped nickel ion in the Li/Li1−x Fe0.8Ni0.2O2-Li x MnO2 cell, which results in the increased initial discharge capacity from the redox reaction of Ni2+/Ni3+ between 2.0 and 1.5 V region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 15, 783 (1980).

    Article  CAS  Google Scholar 

  2. E. Rossen, J.N. Reimers and J.R. Dahn, Solid State Ionics, 62, 53 (1993).

    Article  CAS  Google Scholar 

  3. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori, Electrochim. Acta, 38, 1159 (1993).

    Article  CAS  Google Scholar 

  4. D. H. Jang, Y. J. Shin and S.M. Oh, J. Electrochem. Soc., 143, 2204 (1996).

    Article  CAS  Google Scholar 

  5. Y. Xia, Y. Zhou and M. Yoshio, J. Electrochem. Soc., 144, 2593 (1997).

    Article  CAS  Google Scholar 

  6. Y. Xia and M. Yoshio, J. Power Sources, 57, 125 (1995).

    Article  CAS  Google Scholar 

  7. R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi and Y. Yamaguchi, J. Electrochem. Soc., 143, 2435 (1996).

    Article  CAS  Google Scholar 

  8. T. Shirane, R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama and F. Izumi, Solid State Ionics, 79, 227 (1995).

    Article  CAS  Google Scholar 

  9. M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama and O. Nakamura, Solid State Ionics, 79, 220 (1995).

    Article  CAS  Google Scholar 

  10. M. Tabuchi, C. Masquelier, T. Takeuchi, K. Ado, I. Matsubara, T. Shirane, R. Kanno, S. Tsutsui, S. Nasu, H. Sakaebe and O. Nakamura, Solid State Ionics, 90, 129 (1996).

    Article  CAS  Google Scholar 

  11. K. Ado, M. Tabuchi, H. Kobayashi, H. Kageyama, O. Nakamura, Y. Inaba, R. Kanno, M. Takagi and Y. Takeda, J. Electrochem. Soc., 144, L177 (1997).

    Article  CAS  Google Scholar 

  12. M. Tabuchi, K. Ado, H. Kobayashi, I. Matsubara, H. Kageyama, M. Wakita, S. Tsutsui, S. Nasu, Y. Takeda, C. Masqulier, A. Hirano and R. Kanno, J. Solid State Chem., 141, 554 (1998).

    Article  CAS  Google Scholar 

  13. M. Tabuchi, S. Tsutsui, C. Masquelier, R. Kanno, K. Ado, I. Matsubara, S. Nasu and H. Kageyama, J. Solid State Chem., 140, 159 (1998).

    Article  CAS  Google Scholar 

  14. Y. Sakurai, H. Arai, S. Okada and J. Yamaki, J. Power Sources, 68, 711 (1997).

    Article  CAS  Google Scholar 

  15. Y. Sakurai, H. Arai and J. Yamaki, Solid State Ionics, 113–115, 29 (1998).

    Article  Google Scholar 

  16. Y. S. Lee, S. Sato, M. Tabuchi, C. S. Yoon, Y.K. Sun, K. Kobayakawa and Y. Sato, Electrochem. Comm., 5, 549 (2003).

    Article  CAS  Google Scholar 

  17. Y. S. Lee, S. Sato, Y.K. Sun, K. Kobayakawa and Y. Sato, Electrochem. Comm., 5, 359 (2003).

    Article  CAS  Google Scholar 

  18. Y. S. Lee, C. S. Yoon, Y. K. Sun, K. Kobayakawa and Y. Sato, Electrochem. Comm., 4, 727 (2002).

    Article  CAS  Google Scholar 

  19. Y. S. Lee and M. Yoshio, Electrochem. Solid-State Lett., 4(10), A166 (2001).

    Article  CAS  Google Scholar 

  20. Y. S. Lee, C. S. Yoon, Y. K. Sun and M. Yoshio, Electrochem. Solid-State Lett., 5(1), A1 (2002).

    Article  CAS  Google Scholar 

  21. S.G. Youn, I.H. Lee, C. S. Yoon, C.K. Kim, Y.K. Sun, Y. S. Lee and M. Yoshio, J. Power Sources, 108(1–2), 97 ( 2002).

    Article  CAS  Google Scholar 

  22. Y. Ito, Y. Idemoto, Y. Tsunoda and N. Koura, J. Power Sources, 119–121, 733 (2003).

    Article  Google Scholar 

  23. H. Ikuta, K. Takanaka and M. Wakihara, Electrochim. Acta, 414(2), 227 (2004).

    CAS  Google Scholar 

  24. S. H. Park, K. S. Park, K. S. Nahm, Y. K. Sun, Y. S. Lee and M. Yoshio, Electrochim. Acta, 47, 1721 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, GJ., Heo, JB., Cho, SH. et al. Preparation, electrochemical properties, and cycle mechanism of Li1−x Fe0.8Ni0.2O2-Li x MnO2 (Mn/(Fe+Ni+Mn)=0.8) material. Korean J. Chem. Eng. 25, 1389–1396 (2008). https://doi.org/10.1007/s11814-008-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0228-6

Key words

Navigation