Skip to main content
Log in

Effect of dissolved oxygen concentration and light intensity on photocatalytic degradation of phenol

  • Catalysis, Reaction Engineering, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Catalyst loading is an important parameter that needs to be optimized in the operation of photocatalytic slurry reactors. In this study on photocatalytic degradation of phenol, the optimum catalyst loading was found to depend mainly on the dissolved oxygen (DO) concentration in the aqueous solution, especially at higher irradiation intensities. The estimated Langmuir-Hinshelwood (L-H) kinetics constants were found to vary with light intensity and dissolved oxygen concentration. The intermediate products of photocatalytic oxidation were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 64 (2008).

    Article  CAS  Google Scholar 

  2. V. Augugliaro, L. Palmisano, M. Schiavello and A. Sclafani, Appl. Catal., 69, 323 (1991).

    Article  CAS  Google Scholar 

  3. E. Pelizzetti and C. Minero, Electrochim. Acta, 38, 47 (1993).

    Article  CAS  Google Scholar 

  4. L. Devydov, R. Tsekov and P. G. Smirniotis, Chem. Eng. Sci., 56, 4837 (2001).

    Article  Google Scholar 

  5. J. Peral, J. Casado and J. Domenech, J. Photochem. Photobiol., A, 44, 209 (1988).

    Article  CAS  Google Scholar 

  6. R. Terzian and N. Serpone, J. Photochem. Photobiol., A, 89, 163 (1995).

    Article  CAS  Google Scholar 

  7. I. Ilisz, Z. Laszlo and A. Dombi, Appl. Catal., A, 180, 25 (1999).

    Article  CAS  Google Scholar 

  8. C. B. Almquist and P. Biswas, Chem. Eng. Sci., 56, 3421 (2001).

  9. C. Wang, A. Heller and H. Gerischer, J. Am. Chem. Soc., 114, 5230 (1992).

    Article  CAS  Google Scholar 

  10. U. Stafford, K. A. Gray and P.V. Kamat, J. Catal., 167, 25 (1997).

    Article  CAS  Google Scholar 

  11. T. Hirakawa, T. Daimon, M. Kitazawa, N. Ohguri, C. Koga, N. Negishi, S. Kitazawa and Y. Nosaka, J. Phochem. Photobiol., A, 190, 58 (2007).

    Article  CAS  Google Scholar 

  12. J.-M. Herrmann, C. Guillard and P. Pichat, Catal. Today, 17, 7 (1993).

    Article  CAS  Google Scholar 

  13. D. Chen and A. K. Ray, Appl. Catal., B, 23, 143 (1999).

    Article  Google Scholar 

  14. I. Kim, H. Ha, S. Lee and J. Lee, Korean J. Chem. Eng., 22, 382 (2005).

    Article  CAS  Google Scholar 

  15. M. Salaices, B. Serrano and H. I. de Lasa, Chem. Eng. Sci., 59, 3 (2004).

    Article  CAS  Google Scholar 

  16. S. Bekkouche, M. Bouhelassa, N.H. Salah and F. Z. Meghlaoui, Desalination, 166, 355 (2004).

    Article  CAS  Google Scholar 

  17. D. Curco, S. Malato, J. Blanco, J. Gimenez and P. Marco, Solar Energy, 56, 387 (1996).

    Article  CAS  Google Scholar 

  18. L. S. Clescerl, A. E. Greenberg and A. D. Eaton, Eds., Standard methods for the examination of water and wastewater 18th edition, APHA-AWWA-WEF (1992).

  19. C. G. Hatchard and C. A. Parker, Proc. R. Soc. A, 235, 518 (1956).

    Article  CAS  Google Scholar 

  20. H. Gerischer, Electrochim. Acta, 40, 1277 (1995).

    Article  CAS  Google Scholar 

  21. R.W. Matthews, Water Res., 24, 653 (1990).

    Article  CAS  Google Scholar 

  22. V. Brezova and A. Stasko, J. Catal., 147, 156 (1994).

    Article  CAS  Google Scholar 

  23. K. Okamoto, Y. Yamamoto, H. Tanaka and A. Itaya, Bull. Chem. Soc. Jpn., 58, 2023 (1985).

    Article  CAS  Google Scholar 

  24. C. S. Turchi and D. F. Ollis, J. Catal., 119, 483 (1989).

    Article  CAS  Google Scholar 

  25. K. Chhor, J. F. Bocquet and C. Colbeau-Justin, Mater. Chem. Phys., 86, 123 (2004).

    Article  CAS  Google Scholar 

  26. A.V. Emeline, V. Ryabchuk and N. Serpone, J. Photochem. Photobiol., A, 133, 89 (2000).

    Article  CAS  Google Scholar 

  27. Y. Xu and C.H. Langford, J. Photochem. Photobiol., A, 133, 67 (2000).

    Article  CAS  Google Scholar 

  28. A. Sobczynski, L. Duczmal and W. Zmudzinski, J. Mol. Catal., A, 213, 225 (2004).

    Article  CAS  Google Scholar 

  29. D. F. Ollis, J. Phys. Chem. B., 109, 2439 (2005).

    Article  CAS  Google Scholar 

  30. N. Serpone, J. Photochem. Photobiol., A, 104, 1 (1997).

    Article  CAS  Google Scholar 

  31. M.C. Bosco, M. Garrido and M. S. Larrechi, Anal. Chim. Acta, 559, 240 (2006).

    Article  CAS  Google Scholar 

  32. B. Sun and P. G. Smirniotis, Catal. Today, 88, 49 (2003).

    Article  CAS  Google Scholar 

  33. L. Zhang, T. Kanki, N. Sano and A. Toyoda, Environ. Monit. Assess., 115, 395 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravamudan Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, M., Kannan, A. Effect of dissolved oxygen concentration and light intensity on photocatalytic degradation of phenol. Korean J. Chem. Eng. 25, 1300–1308 (2008). https://doi.org/10.1007/s11814-008-0213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0213-0

Key words

Navigation