Skip to main content
Log in

Hydrothermal synthesis and characterization of Fe(III)-substituted mordenites

  • Catalysis, Reaction Engineering, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Fe-substituted mordenites were synthesized hydrothermally, partially substituting iron atoms for the framework aluminum of mordenite. XRD, SEM, IR, UV-VIS DRS, ESR, XAS, and catalytic activity studies provided the evidence of Fe3+ present in the zeolite framework. The framework IR bands were shifted to lower frequencies as Fe3+ ions incorporated into the lattice, and a new Si-O-Fe bond vibration was located near 668 cm−1. The presence of a signal at g=4.3 in the ESR spectra was assigned to Fe3+ isomorphously substituted in the tetrahedral position. EXAFS at the Fe K-edge revealed that the Fe3+ ions were present in the zeolite framework in a four-fold coordination with an average Fe-O distance of 1.86 Å. In the UV-vis spectra, an absorption was observed at 375.7 nm which was assigned to the presence of Fe3+ in the zeolite framework. A toluene alkylation study reflected that the acidity strength of mordenite is weakened due to the presence of lattice iron species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dong, J. Wang, Y. Sun, T. Hu, T. Liu and Y. Xie, Acta Chim. Sinica, 43, 237 (2001).

    CAS  Google Scholar 

  2. H.-Y. Chen, E.-M. El-Malki, X. Wang, R. A. Van Santen and W.M. H. Sachtler, J. Mol. Catal. A: Chem., 162, 159 (2000).

    Article  CAS  Google Scholar 

  3. R. Szostak and T. L. Thomas, J. Chem. Soc., Chem. Commun., 113 (1986).

  4. P. Fejes, I. Kiricsi, K. Kovacs, K. Lazar, I. Marsi, A. Oszko, A. Rockenbauer and Z. Schay, Appl. Catal. A: General, 223, 147 (2002).

    Article  CAS  Google Scholar 

  5. F. Testa, L. Pasqua, F. Crea, R. Aiello, K. Lazar, P. Fejes, P. Lentz and J. B. Nagy, Microporous and Mesoporous Materials, 57, 57 (2003).

    Article  CAS  Google Scholar 

  6. J.A. Melero, G. Calleja, F. Martinez, R. Molina and K. Lazar, Microporous and Mesoporous Materials, 74, 11 (2004).

    Article  CAS  Google Scholar 

  7. G. J. Kim and W. S. Ahn, Korean J. Chem. Eng., 9, 60 (1992).

    Article  CAS  Google Scholar 

  8. G. Giordano, A. Katovic and D. Caputo, Stud. Surf. Sci. Catal., 140, 307 (2001).

    Article  CAS  Google Scholar 

  9. M.M. Mohamed, N. S. Gomaa, M. El-Moselhy and N.A. Eissa, J. Colloid Interf. Sci., 259, 331 (2003).

    Article  CAS  Google Scholar 

  10. R. Kumar and P. Ratnasamy, J. Catal., 121, 89 (1990).

    Article  CAS  Google Scholar 

  11. P. Ratnasamy and R. Kumar, Catal. Today, 9, 327 (1991).

    Article  CAS  Google Scholar 

  12. K. Lattam, C. I. Round and C. D. Williams, Microporous and Mesoporous Materials, 38, 333 (2000).

    Article  Google Scholar 

  13. V. Umamaheswari, W. Bohlmann, A. Poppl, A. Vinu and M. Hartmann, Microporous and Mesoporous Materials, 89, 47 (2006).

    Article  CAS  Google Scholar 

  14. J. Perez-Ramirez, J. C. Groen, A. Bruckner, M. S. Kumar, U. Bentrup, M. N. Debbagh and L. A. Villaescusa, J. Catal., 232, 318 (2005).

    Article  CAS  Google Scholar 

  15. A. Ristic, N. N. Tusar, G. Vlaic, I. Arcon, F. Thibault-Starzyk, N. Malicki and V. Kaucic, Microporous and Mesoporous Materials, 76, 61 (2004).

    Article  CAS  Google Scholar 

  16. A. Ristic, N. N. Tusar, I. Arcon, N. Z. Logar, F. Thibault-Starzyk, J. Czyzniewska and V. Kaucic, Chem. Mater., 15, 3643 (2003).

    Article  CAS  Google Scholar 

  17. N. S. Nesterenko, O.A. Ponomoreva, V.V. Yuschenko, I. I. Ivanova, F. Testa, F.D. Renzo and F. Fajula, Appl. Catal. A: General, 254, 261 (2003).

    Article  CAS  Google Scholar 

  18. W. Zhao, L. Kong, Y. Luo and Q. Li, Microporous and Mesoporous Materials, 100, 111 (2007).

    Article  CAS  Google Scholar 

  19. M. S. Kumar, J. Perez-Ramirez, M. N. Debbagh, B. Smarsly, U. Bentrup and A. Bruckner, Appl. Catal. B: Environmental, 62, 244 (2006).

    Article  CAS  Google Scholar 

  20. Y. Han, X. Meng, H. Guan, Y. Yu, L. Zhao, X. Xu, X. Yang, S. Wu, N. Li and F. S. Xiao, Microporous and Mesoporous Materials, 57, 191 (2003).

    Article  CAS  Google Scholar 

  21. N.N. Tusar, N. Z. Logar, I. Arcon, G. Mali, M. Mazaj, A. Ristic, K. Lazar and V. Kaucic, Microporous and Mesoporous Materials, 87, 52 (2005).

    Article  CAS  Google Scholar 

  22. R. Aiello, J.B. Nagy, G. Giordano, A. Katovic and F. Testa, C. R. Chimie, 8, 321 (2005).

    CAS  Google Scholar 

  23. T. Demuth, J. Hafner, L. Benco and H. Toulhoat, J. Phys. Chem. B, 104, 4593 (2000).

    Article  CAS  Google Scholar 

  24. S. Yuan, J. Wang, Y. Li and S. Peng, J. Mol. Catal. A, 175, 131 (2001).

    Article  CAS  Google Scholar 

  25. P. Fejes, J. B. Nagy, J. Halasz and A. Oszko, Appl. Catal. A: General, 175, 89 (1998).

    Article  CAS  Google Scholar 

  26. E.A. Stern, M. Newville, B. Ravel, B.Y. Yacoby and D. Haskel, Physica B, 208–209, 117 (1995).

    Article  Google Scholar 

  27. M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, and E.A. Stern, Phys. Rev. B, 47, 14126 (1993).

    Google Scholar 

  28. P. D. Angelo and M. Benfatto, J. Phys. Chem. A, 108(20), 4505 (2004).

    Article  Google Scholar 

  29. J. J. Rehr, R. C. Albers and S. I. Zabinsky, Phys. Rev. Lett., 69, 3397 (1992).

    Article  CAS  Google Scholar 

  30. T. Lee, F. Benesch, Y. Jiang and C.G. Rose-Petruck, Chem. Phys., 299, 233 (2004).

    Article  CAS  Google Scholar 

  31. G. J. Kim and W. S. Ahn, Zeolites, 11, 745 (1991).

    Article  CAS  Google Scholar 

  32. Y. Kuang, N. He, J. Wang, P. Xiao, C. Yuan and Z. Lu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179, 177 (2001).

    Article  CAS  Google Scholar 

  33. V. Parvulescu and B.-L. Su, Catal. Today, 69, 315 (2001).

    Article  CAS  Google Scholar 

  34. E.M. Flanigen, in J. Rabo (Ed.), Zeolite chemistry and catalysis, Am.Chem. Soc., Washington DC, p. 201 (1971).

    Google Scholar 

  35. F. Hazel, R. U. Schock and M. Gordon, J. Am. Chem. Soc., 71, 2256 (1949).

    Article  CAS  Google Scholar 

  36. R. Szostak and T. L. Thomas, J. Catal., 100, 555 (1986).

    Article  CAS  Google Scholar 

  37. Y. S. Ko and W. S. Ahn, Microporous and Mesoporous Materials, 9, 131 (1997).

    CAS  Google Scholar 

  38. P. Fejes, I. Kiricsi, K. Lazar, I. Marsi, A. Rockenbauer and L. Korecz, Appl. Catal. A: General, 242, 63 (2003).

    Article  CAS  Google Scholar 

  39. P. Decyk, M. Trejda and M. Ziolek, C. R. Chimie, 8, 635 (2005).

    CAS  Google Scholar 

  40. D. Goldfarb, M. Barnardo, K.G. Strohmaier, D. E.W. Vaughan and H. Thomann, J. Am. Chem. Soc., 116, 6344 (1994).

    Article  CAS  Google Scholar 

  41. A. Bruckner, U. Lohse and H. Mehner, Microporous and Mesoporous Materials, 20, 207 (1998).

    Article  CAS  Google Scholar 

  42. J.W. Park and H. Chon, J. Catal., 133, 159 (1992).

    Article  CAS  Google Scholar 

  43. J. Perez-Ramirez, M. S. Kumar and A. Brukner, J. Catal., 223, 13 (2004).

    Article  CAS  Google Scholar 

  44. G. Berlier, G. Spoto, S. Bordiga, G. Ricchiardi, P. Fisicaro, A. Zecchina, I. Rossetti, E. Selli, L. Forni, E. Giamello and C. Lamberti, J. Catal., 208, 64 (2002).

    Article  CAS  Google Scholar 

  45. T. Inui, H. Nagata, T. Takeguchi, S. Iwamoto, H. Matsuda and M. Inoue, J. Catal., 139, 482 (1993).

    Article  CAS  Google Scholar 

  46. F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier and M. Verdaguer, Inorg. Chem., 27, 3166 (1988).

    Article  CAS  Google Scholar 

  47. S. Yuan, J. Wang, Y. Li and H. Jiao, J. Mol. Structure (Theochem), 674, 267 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sig Ko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, Y.S., Jang, H.T. & Ahn, W.S. Hydrothermal synthesis and characterization of Fe(III)-substituted mordenites. Korean J. Chem. Eng. 25, 1286–1291 (2008). https://doi.org/10.1007/s11814-008-0211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0211-2

Key words

Navigation