Skip to main content
Log in

Onset of buoyancy-driven convection in melting from below

  • Process Systems Engineering, Process Safety, Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

When a horizontal homogeneous solid is melted from below, convection can be induced in a thermally unstable melt layer. In this study the onset of buoyancy-driven convection during time-dependent melting is investigated by using similarly transformed disturbance equations. The critical Rayleigh numbers based on the melt-layer thickness are found numerically for various conditions. For small superheats, the present predictions approach the well known results of classical Rayleigh-Bénard problems, that is, critical Rayleigh numbers are located between 1,296 and 1,708, regardless of the Prandtl number. However, for high superheats the critical Rayleigh number increases with an increase in phase change rate but with decrease in Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Sparrow, L. Lee and N. Shamsundar, J. Heat Transfer, 98, 88 (1976).

    Google Scholar 

  2. C. Gau and R. Viskanta, Int. J. Heat Mass Transfer, 28, 573 (1985).

    Article  CAS  Google Scholar 

  3. C. F. Chen and F. Chen, J. Fluid Mech., 227, 567 (1991).

    Article  CAS  Google Scholar 

  4. I.G. Hwang and C.K. Choi, J. Crystal Growth, 267, 714 (2004).

    Article  CAS  Google Scholar 

  5. R. J. Goldstein and J.W. Ramsey, in Studies in heat transfer, A. Festschrift, E. R.G. Eckert, J. P. Hartnet Eds., McGraw-Hill, Washington DC, pp. 199–208 (1978).

    Google Scholar 

  6. S. Ostrach, Trans. ASME: J. Fluids Eng., 105, 5 (1983).

    Article  CAS  Google Scholar 

  7. D. Feldman, M. M. Shapiro, D. Banu and C. J. Fuks, Solar Energy Mater., 18, 201 (1989).

    Article  CAS  Google Scholar 

  8. M. K. Smith, J.Fluid Mech., 188, 547 (1988).

    Article  CAS  Google Scholar 

  9. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed., Oxford Univ. Press (1959).

  10. I. G. Hwang, AIChE J., 47, 1698 (2001).

    Article  CAS  Google Scholar 

  11. D.V. Boger and J.W. Westwater, Trans. ASME: J. Heat Transfer, 89, 81 (1967).

    CAS  Google Scholar 

  12. R. P. Lowell, J. Volcanol. Geotherm. Res., 26, 1 (1985).

    Article  CAS  Google Scholar 

  13. M. C. Kim, T. J. Chung and C.K. Choi, Kor. J. Chem. Eng., 21, 69 (2004).

    Article  CAS  Google Scholar 

  14. J. Mathews and R. L. Walker, Mathematical methods of physics, 2nd ed., W.A. Benjamin Inc. (1970).

  15. E.M. Sparrow, R. J. Goldsetin and V.K. Jonsson, J. Fluid Mech., 18, 513 (1964).

    Article  Google Scholar 

  16. M. C. Kim, H. K. Park and C. K. Choi, Theoret. Comput. Fluid Mech., 16, 49 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.C., Lee, D.W. & Choi, C.K. Onset of buoyancy-driven convection in melting from below. Korean J. Chem. Eng. 25, 1239–1244 (2008). https://doi.org/10.1007/s11814-008-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0205-0

Key words

Navigation