Skip to main content

Determination of yield distribution in olefin production by thermal cracking of atmospheric gasoil

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


A pilot plant was designed and set up to study the thermal cracking of atmospheric gasoil. Based on the CCD (central composite design) method, a set of systematic experiments were designed and carried out. The designed variables were COT (coil outlet temperature), steam ratio and feed flow rate. The ranges of these variables were, respectively, equal to 716–884 °C, 0.46–1.136 and 0.977–6.02 g/min. The obtained minimum and maximum yield of ethylene was, respectively, equal to 1.7% and 30.9%, as well as the maximum yield of propylene was 12.2%. To predict the yield distribution of products and the coke formation in the range of operating conditions, a mechanistic model was developed based on experimental results. To analyze and characterize the atmospheric gasoil, a novel algorithm was applied. This algorithm utilized density, ASTM distillation curve, H/C ratio and the total aromatic fraction and generates the detail analysis of feedstock including paraffinic, naphthenic, aromatics and poly aromatic compounds.

This is a preview of subscription content, access via your institution.


  1. A. Niaei, J. Towfighi, S. M. Sadreameli and R. Karimzadeh, Applied Thermal Engineering, 24, 2251 (2004).

    Article  CAS  Google Scholar 

  2. S. M. Sadreameli and A. E. S. Green, Journal of Analytical and Applied Pyrolysis, 73, 305 (2005).

    Article  Google Scholar 

  3. M. E. Masoumi, S. M. Sadreameli, J. Towfighi and A. Niaei, Energy, 31, 516 (2006).

    Article  CAS  Google Scholar 

  4. K.Y. Grace Chan, F. Inal and S. Senkan, I & EC Research, 37 (1998).

  5. H. Manafzadeh, S. M. Sadreameli and J. Towfighi, Applied Thermal Engineering, 23, 1347 (2003).

    CAS  Google Scholar 

  6. S. B. Zdonik, G. L. Hayward and S. H. Fishtine, Hydrocarbon processing, December (1975).

  7. V. Kaiser, D. Gilbourne and C. A. Pocini, Hydrocarbon processing, April (1977).

  8. M. Hirato, S. Yoshioka and Matanuska, Hitachi Rev., 20(8), 326 (1971).

    CAS  Google Scholar 

  9. M. Hirato and S. Yoshioka, International Chemical Engineering, 13(2), 347 (1973).

    Google Scholar 

  10. D. Depeyre, C. Flicoteaus, F. Arabzadeh and A. Zabaniotou, I & Eng. Chem. Res., 28(7) (1989).

  11. P. J. Clymans, G. F. Froment, M. Berthelin and P. Trambouze, AIChE J., 30(6), 904 (1988).

    Article  Google Scholar 

  12. E. Ranzi, T. Faravelli, P. Gaffuri, E. Garavaglia and A. Goldaniga, Ind. Eng. Chem. Res., 36, 3336 (1997).

    Article  CAS  Google Scholar 

  13. E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano and T. Faravelli, Progress in Energy and Combustion Science, 27, 99 (2001).

    Article  CAS  Google Scholar 

  14. J. E. Gwyn, Fuel Processing Technology, 70, 1 (2001).

    Article  CAS  Google Scholar 

  15. F. Shubo, S. Liming and L. Qiangkun, Journal of Analytical and Applied Pyrolysis, 65, 301 (2002).

    Article  Google Scholar 

  16. L. F. Albright, B. L. Crynes and W. H. Corcoran, Pyrolysis: Theory and industrial practice, Academic Press (1983).

  17. M. Dente, E. Ranzi, G. Bozzano, T. Faravelli and P. J. M. Valkenburg, Heavy component description in the kinetic modeling of hydrocarbon pyrolysis, AIChE Spring National Meeting, April 23 (2001).

  18. U. Taskar and J. B. Riggs, AIChE J., 43(3), 740 (1997).

    Article  CAS  Google Scholar 

  19. S. Zahedi. Abghari, S. S. Mohaddecy, S. Sedighi and H. Bonyad, Proceeding of 10th Iranian chemical engineering conference, 3372 (2005).

  20. M. R. Riazi and T. E. Daubert, Hydrocarbon processing, 115 (March 1980).

  21. J. Towfighi, A. Niaei, R. Karimzadeh and G. Saedi, Korean J. Chem. Eng., 23, 816 (2006).

    Article  Google Scholar 

  22. K. M. Sundaram and G. F. Froment, Chemical Engineering Science, 32, 601 (1977).

    Article  CAS  Google Scholar 

  23. R. Zou, Fundamentals of pyrolysis in petrochemistry and technology, Lewis Pub (1993).

  24. G. E. P. Box and N. R. Draper, Empirical model-building and response surfaces, John Wiley & Sons (1987).

  25. C. F. Gerold and P. O. Wheatley, Applied numerical analysis, Addison-Wesley publishing company (1984).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sorood. Zahedi. Abghari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abghari, S.Z., Darian, J.T., Karimzadeh, R. et al. Determination of yield distribution in olefin production by thermal cracking of atmospheric gasoil. Korean J. Chem. Eng. 25, 681–692 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Key words

  • Thermal Cracking
  • Atmospheric Gasoil
  • Feed Characterization
  • Modeling
  • Experimental Design