Abstract
A pilot plant was designed and set up to study the thermal cracking of atmospheric gasoil. Based on the CCD (central composite design) method, a set of systematic experiments were designed and carried out. The designed variables were COT (coil outlet temperature), steam ratio and feed flow rate. The ranges of these variables were, respectively, equal to 716–884 °C, 0.46–1.136 and 0.977–6.02 g/min. The obtained minimum and maximum yield of ethylene was, respectively, equal to 1.7% and 30.9%, as well as the maximum yield of propylene was 12.2%. To predict the yield distribution of products and the coke formation in the range of operating conditions, a mechanistic model was developed based on experimental results. To analyze and characterize the atmospheric gasoil, a novel algorithm was applied. This algorithm utilized density, ASTM distillation curve, H/C ratio and the total aromatic fraction and generates the detail analysis of feedstock including paraffinic, naphthenic, aromatics and poly aromatic compounds.
This is a preview of subscription content, access via your institution.
References
A. Niaei, J. Towfighi, S. M. Sadreameli and R. Karimzadeh, Applied Thermal Engineering, 24, 2251 (2004).
S. M. Sadreameli and A. E. S. Green, Journal of Analytical and Applied Pyrolysis, 73, 305 (2005).
M. E. Masoumi, S. M. Sadreameli, J. Towfighi and A. Niaei, Energy, 31, 516 (2006).
K.Y. Grace Chan, F. Inal and S. Senkan, I & EC Research, 37 (1998).
H. Manafzadeh, S. M. Sadreameli and J. Towfighi, Applied Thermal Engineering, 23, 1347 (2003).
S. B. Zdonik, G. L. Hayward and S. H. Fishtine, Hydrocarbon processing, December (1975).
V. Kaiser, D. Gilbourne and C. A. Pocini, Hydrocarbon processing, April (1977).
M. Hirato, S. Yoshioka and Matanuska, Hitachi Rev., 20(8), 326 (1971).
M. Hirato and S. Yoshioka, International Chemical Engineering, 13(2), 347 (1973).
D. Depeyre, C. Flicoteaus, F. Arabzadeh and A. Zabaniotou, I & Eng. Chem. Res., 28(7) (1989).
P. J. Clymans, G. F. Froment, M. Berthelin and P. Trambouze, AIChE J., 30(6), 904 (1988).
E. Ranzi, T. Faravelli, P. Gaffuri, E. Garavaglia and A. Goldaniga, Ind. Eng. Chem. Res., 36, 3336 (1997).
E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano and T. Faravelli, Progress in Energy and Combustion Science, 27, 99 (2001).
J. E. Gwyn, Fuel Processing Technology, 70, 1 (2001).
F. Shubo, S. Liming and L. Qiangkun, Journal of Analytical and Applied Pyrolysis, 65, 301 (2002).
L. F. Albright, B. L. Crynes and W. H. Corcoran, Pyrolysis: Theory and industrial practice, Academic Press (1983).
M. Dente, E. Ranzi, G. Bozzano, T. Faravelli and P. J. M. Valkenburg, Heavy component description in the kinetic modeling of hydrocarbon pyrolysis, AIChE Spring National Meeting, April 23 (2001).
U. Taskar and J. B. Riggs, AIChE J., 43(3), 740 (1997).
S. Zahedi. Abghari, S. S. Mohaddecy, S. Sedighi and H. Bonyad, Proceeding of 10th Iranian chemical engineering conference, 3372 (2005).
M. R. Riazi and T. E. Daubert, Hydrocarbon processing, 115 (March 1980).
J. Towfighi, A. Niaei, R. Karimzadeh and G. Saedi, Korean J. Chem. Eng., 23, 816 (2006).
K. M. Sundaram and G. F. Froment, Chemical Engineering Science, 32, 601 (1977).
R. Zou, Fundamentals of pyrolysis in petrochemistry and technology, Lewis Pub (1993).
G. E. P. Box and N. R. Draper, Empirical model-building and response surfaces, John Wiley & Sons (1987).
C. F. Gerold and P. O. Wheatley, Applied numerical analysis, Addison-Wesley publishing company (1984).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Abghari, S.Z., Darian, J.T., Karimzadeh, R. et al. Determination of yield distribution in olefin production by thermal cracking of atmospheric gasoil. Korean J. Chem. Eng. 25, 681–692 (2008). https://doi.org/10.1007/s11814-008-0112-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11814-008-0112-4
Key words
- Thermal Cracking
- Atmospheric Gasoil
- Feed Characterization
- Modeling
- Experimental Design