Skip to main content
Log in

Recrystallization of phenylbutazone using supercritical fluid antisolvent process

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Phenylbutazone was recrystallized from its solutions by using a supercritical fluid antisolvent process. It was dissolved in acetone and supercritical carbon dioxide was injected into the solution, thereby inducing supersaturation and particle formation. Variation in the physical properties of the recrystallized phenylbutazone was investigated as a function of the crystallizing temperature and the carbon dioxide injection rate. The recrystallized particles showed cleaner surfaces and more ordered morphology compared to the particles obtained by other methods such as solvent evaporation. X-ray diffraction patterns indicated that the crystallinity of the particles had been modified upon the recrystallization. Differential scanning calorimetry measurement revealed that the crystallizing temperature influenced the thermal stability of the resulting crystals. Larger crystals were produced when the carbon dioxide injection rate was reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Jung and M. Perrut, J. Supercrit, Fluids, 20, 179 (2001).

    Article  CAS  Google Scholar 

  2. N. Foster, R. Mammucari, F. Dehghani, A, Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, A. Ng, H. L. Regtop and A. Tandya, Ind. Eng. Chem. Res., 42, 6476 (2003).

    Article  CAS  Google Scholar 

  3. G. Li, J. Chu, E. S. Song, K. H. Row, K. H. Lee and Y.W. Lee, Korean J. Chem. Eng., 23, 482 (2006).

    Article  CAS  Google Scholar 

  4. G. A. Sacha, W. J. Schmitt and S. L. Nail, Pharm. Dev. Technol., 11, 187 (2006).

    Article  CAS  Google Scholar 

  5. F. Miguel, A. Martin, T. Gamse and M. J. Cocero, J. Supercrit. Fluids, 36, 225 (2006).

    Article  CAS  Google Scholar 

  6. E. Reverchon and I. De Marco, Powder Technol., 164, 139 (2006).

    Article  CAS  Google Scholar 

  7. M. Gimeno, N. Ventosa, Y. Boumghar, J. Fournier, I. Boucher and J. Veciana, J. Supercrit. Fluids, 38, 94 (2006).

    Article  CAS  Google Scholar 

  8. S. J. Park, S.Y. Jeon and S. D. Yeo, Ind. Eng. Chem. Res., 45, 2287 (2006).

    Article  CAS  Google Scholar 

  9. D. J. Jarmer, C. S. Lengsfeld, K. S. Anseth and T.W. Randolph, J. Pharm. Sci., 94, 2688 (2005).

    Article  CAS  Google Scholar 

  10. Y. Matsuda, E. Tatsumi, E. Chiba and Y. Miwa, J. Pharm. Sci., 73, 1453 (1984).

    Article  CAS  Google Scholar 

  11. S. D. Yeo, M. S. Kim and J.C. Lee, J. Supercrit. Fluids, 25, 143 (2003).

    Article  CAS  Google Scholar 

  12. B.D. Cullity, Elements of X-ray diffraction, 2nd Ed., Addison-Wesley Publishing Co., Massachusetts (1978).

    Google Scholar 

  13. J. L. Ford and P. Timmins, Pharmaceutical thermal analysis, Ellis-Horwood Ltd., Chichester, England (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Do Yeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SJ., Yeo, SD. Recrystallization of phenylbutazone using supercritical fluid antisolvent process. Korean J. Chem. Eng. 25, 575–580 (2008). https://doi.org/10.1007/s11814-008-0097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0097-z

Key words

Navigation