Korean Journal of Chemical Engineering

, Volume 25, Issue 3, pp 535–541 | Cite as

Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence

  • Chang Moon Jeong
  • Jin Dal Rae Choi
  • Yeonghee Ahn
  • Ho Nam Chang
Biotechnology

Abstract

Removal of volatile fatty acids in anaerobic digestion of organic wastes can accelerate eventual decomposition of organic wastes to CO2 and H2O using a recovery of electric energy by a microbial fuel cell. The fuel cell anode chamber was a 10 cm (I.D.)×20 cm long cylindrical Plexiglass having an ion ceramic cylinder separator (I.D.10 mm, O.D.12 mm, 0.3 μm average pore size). The aluminum foil cathode (12 cm2 surface area) was located inside the ceramic cylinder. Between the two cylinders, 1 liter of activated carbon particles was packed as anode electrode having a void fraction of 0.4. This fuel cell was connected to a 5 liter bioreactor (working volume 1.5 liter), and the bioreactor was run in batch mode by re-circulating a synthetic wastewater of 5 g/L glucose. Maximum TVFA (total volatile fatty acids) and SCOD (soluble chemical oxygen demand) removal rate were 3.79 g/L·day, 5.88 g/L·day, respectively. TVFA removal efficiency (92.7%) and SCOD removal efficiency (94.7%) under maximum current density operation were higher than the operation with maximum power density. In acid fermentation, butyric acid concentration was highest because Clostridium butyricum was a dominant microbial communitiy in the inoculum. The microbial cells collected from the anode bio-film samples were affiliated with Bacillus cereus based on the nucleotide sequences of dominant DGGE (denaturing gradient gel electrophoresis) bands.

Key words

Microbial Fuel Cell Acidogenesis Fermentation Organic Acid DGGE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Choi, W.G. Lee, S. J. Lim, B. J. Kim and H. N. Chang, Biotechnol. Bioprocess Eng., 8, 23 (2003).CrossRefGoogle Scholar
  2. 2.
    S. J. Lim, Y. H. Ahn, E.Y. Kim and H. N. Chang, Biotechnol. Bioprocess Eng., 11, 6 (2006).CrossRefGoogle Scholar
  3. 3.
    S. J. Lim, E.Y. Kim, Y. H. Ahn and H. N. Chang, Korean J. Chem. Eng., In Press (2008).Google Scholar
  4. 4.
    J. Björklund, U. Geber and T. Rydberg, Resour. Conserv. Recy., 31, 4 (2001).CrossRefGoogle Scholar
  5. 5.
    J. I. Choi, S.Y. Lee, K. S. Shin, W.G. Lee, S. J. Park, H. N. Chang and Y. K. Chang, Biotechnol. Bioprocess Eng., 7, 371 (2002).CrossRefGoogle Scholar
  6. 6.
    E. Promaros, S. Assabumrungrat, N. Laosiripojana, P. Praserthdam, T. Tagawa and S. Goto, Korean J. Chem. Eng., 24, 1 (2007).CrossRefGoogle Scholar
  7. 7.
    A. K. Shukla, P. Suresh and A. Rajendran, Curr. Sci. India, 87, 4 (2004).Google Scholar
  8. 8.
    R. Korneel and V. Willy, Trends Biotechnol., 23, 6 (2005).CrossRefGoogle Scholar
  9. 9.
    D. Frank and P. J. H. Seamus, Biosens. Bioelectron., 22 (2007).Google Scholar
  10. 10.
    D. R. Lovley, Curr. Opin. Biotech., 17 (2006).Google Scholar
  11. 11.
    R.A. Bullen, T. C. Arnot and F. C. Walsh, Biosens. Bioelectron., 21 (2006).Google Scholar
  12. 12.
    L. Hong and B. E. Logan, Environ. Sci. Technol., 38 (2004).Google Scholar
  13. 13.
    L. Hong, S. Cheng and B. E. Logan, Environ. Sci. Technol., 39 (2005).Google Scholar
  14. 14.
    R.B. Daniel and D.R. Lovley, Appl. Environ. Microb., 71, 4 (2005).Google Scholar
  15. 15.
    R. Korneel, L. Geert, D. S. Steven and V. Willy, Biotechnol. Lett., 25 (2003).Google Scholar
  16. 16.
    D. H. Park and J.G. Zeikus, Appl. Environ. Microb., 66, 4 (2000).Google Scholar
  17. 17.
    H. J. Kim, H. S. Park, M. S. Hyun, I. S. Chang, M. Kim and B. H. Kim, Enzyme Microb. Tech., 30 (2002).Google Scholar
  18. 18.
    K. C. Swades and D. R. Lovley, Nat. Biotechnol., 21, 10 (2003).Google Scholar
  19. 19.
    J. R. Lloyd, V. A. Sole and D. R. Lovley, Appl. Environ. Microb., 66, 9 (2000).CrossRefGoogle Scholar
  20. 20.
    J. Niessen and S. Fritz, Electrochem. Commun., 6 (2004).Google Scholar
  21. 21.
    S. E. Oh and B. E. Logan, Environ. Sci. Technol., 38 (2004).Google Scholar
  22. 22.
    L. Hong and B. E. Logan, Environ. Sci. Technol., 39, 14 (2005).CrossRefGoogle Scholar
  23. 23.
    S. H. DuVall and R. L. McCreery, Anal. Chem., 71 (1999).Google Scholar
  24. 24.
    M. E. Hernandez and D. K. Newman, Cell. Mol. Life Sci., 58 (2001).Google Scholar
  25. 25.
    S. A. Jaffari and A. P. F. Turner, Biosen. Bioelectron., 12 (1997).Google Scholar
  26. 26.
    M. T. Madigan, Brock biology of microorganisms, Prentice Hall (2000).Google Scholar
  27. 27.
    J. Larminie and A. Dicks, Fuel cell systems explained, John Wiley & Sons (2000).Google Scholar
  28. 28.
    K. Pansanga, O. Mekasuwandumrong, J. Panpranot and P. Praserthdam, Korean J. Chem. Eng., 24, 3 (2007).CrossRefGoogle Scholar
  29. 29.
    H. J. Yoo, J. H. Seo, D. G. Kang and H. J. Cha, Korean J. Chem. Eng., 24, 1 (2007).CrossRefGoogle Scholar
  30. 30.
    APHA, AWA, WPCF. In Standard methods for the examination of water and wastewater, 18th ed. (1992).Google Scholar
  31. 31.
    D. C. Gillan, A.G. Speksnijder, G. Zwart and C. Ridder, Appl. Environ. Microbiol., 64 (1998).Google Scholar
  32. 32.
    J. Shiru, Y. Haifeng, L. Yongxian and D. Yujie, Biotechnol. Bioprocess Eng., 12, 3 (2007).Google Scholar
  33. 33.
    Y. J. Jung, J. S. Yoo, Y. S. Lee, I. H. Park, S.H. Kim, S. C. Lee, Y. Masaaki, S.Y. Chung and Y. L. Choi, Biotechnol. Bioprocess Eng., 12, 3 (2007).Google Scholar
  34. 34.
    Y. H. Ahn, E. J. Park, Y. K. Oh, S. H. Park, G. Webster and A. J. Weightman, FEMS Microbiol. Lett., 249, 1 (2005).CrossRefGoogle Scholar
  35. 35.
    K. L. Anderson, T. A. Tayne and D. M. Ward, Appl. Environ. Microb., 53 (1987).Google Scholar
  36. 36.
    Y. J. Choi, E. K. Jung, H. J. Park, S. R. Paik, S. H. Jung and S. H. Kim, Bull. Korean Chem. Soc., 25, 6 (2004).Google Scholar
  37. 37.
    W. Hur and Y.K. Chung, Biotechnol. Bioprocess Eng., 11, 6 (2006).Google Scholar
  38. 38.
    K. H. Kim, J. K. Yu, H. S. Lee, J. H. Choi, S.Y. Noh, S.K. Yoon, C.-S. Lee, T. S. Hwang and Y.W. Rhee, Korean J. Chem. Eng., 24, 3 (2007).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Chang Moon Jeong
    • 1
  • Jin Dal Rae Choi
    • 1
  • Yeonghee Ahn
    • 1
    • 2
  • Ho Nam Chang
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Environmental EngineeringDong-A UniversityBusanKorea

Personalised recommendations