Skip to main content

Advertisement

Log in

Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure

  • Biotechnology
  • Short Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

High hydrostatic pressure (HHP) technology was used for improving the ability of β-carotene biosynthesis of Rhodotorula glutinis R68. After the treatments of five repeated cycles at 300 MPa for 15 min, the barotolerant mutant PR68 was obtained. After 72 h of culture, the biomass of mutant PR68 was 21.6 g/L, decreased by 8.5% compared to the parent strain R68, but its β-carotene production reached 19.4 mg/L, increased by 52.8% compared to the parent strain R68. The result of restriction fragment length polymorphism analysis suggested that mutant strain PR68 was likely to change in nucleic acid level, and thus enhanced β-carotene production in this strain was a result of gene mutation induced by HHP treatment. HHP technology seems a promising approach for improving industrial microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. B. Bhosale and R.V. Gadre, Appl. Environ. Microbiol., 55, 423 (2001).

    CAS  Google Scholar 

  2. E. D. Simova, G. I. Frengova and D. M. Beshkova, J. Ind. Microbiol. Biotechnol., 31, 115 (2004).

    Article  CAS  Google Scholar 

  3. V. Perrier, E. Dubreucq and P. Galzy, Arch. Microbiol., 164, 173 (1995).

    Article  CAS  Google Scholar 

  4. D. H. Bartlett, Biochim. Biophys. Acta, 1595, 367 (2002).

    CAS  Google Scholar 

  5. M. Ritz, J. L. Tholozan, M. Federighi and M. F. Pilet, Int. J. of Food Microbiol., 79, 47 (2002).

    Article  CAS  Google Scholar 

  6. S. Basak, H. S. Ramaswamya and J. P.G. Piette, Innov. Food Sci. Emerg. Technol., 3, 223 (2002).

    Article  CAS  Google Scholar 

  7. D. H. Bartlett, C. Kato and K. Horikoshi, Res. Microbiol., 146, 697 (1995).

    Article  CAS  Google Scholar 

  8. X. Gao, J. Li and K. C. Ruan, Acta Biochim. Biophys. Sinica, 33, 77 (2001).

    CAS  Google Scholar 

  9. K. J. A. Hauben, D. H. Bartlett and C. C. F. Soontjens, Appl. Environ. Microbiol., 63, 945 (1997).

    CAS  Google Scholar 

  10. S. L. Wang, X. Z. Wu and J. S. Sun, Acta Microbiol. Sinica, 45, 970 (2005).

    CAS  Google Scholar 

  11. S. L. Wang, X. Z. Wu and J. S. Sun, Ind. Microbiol. Sinica, 36, 31 (2006).

    CAS  Google Scholar 

  12. D. H. Bartlett, Sci. Prog., 76, 479 (1992).

    CAS  Google Scholar 

  13. E.Y. Wuytack, A. M. J. Diels and C.W. Michiels, Int. J. of Food Microbiol., 77, 205 (2002).

    Article  CAS  Google Scholar 

  14. C. S. Qiao, B. N. Liu, X. Xu and S. R. Jia, China Biotechnol., 26, 56 (2006).

    CAS  Google Scholar 

  15. T. C. Lee, D. B. Rodriguez and I. Karasawa, Appl. Microbiol., 30, 988 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui-Lou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SL., Sun, JS., Han, BZ. et al. Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure. Korean J. Chem. Eng. 25, 513–516 (2008). https://doi.org/10.1007/s11814-008-0086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0086-2

Key words

Navigation