Skip to main content
Log in

Simulation of bubbling fluidized bed of fine particles using CFD

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) simulation for bubbling fluidized bed of fine particles was carried out. The reliability and accuracy of CFD simulation was investigated by comparison with experimental data. The experimental facility of the fluidized bed was 6 cm in diameter and 70 cm in height and an agitator of pitched-blade turbine type was installed to prevent severe agglomeration of fine particles. Phosphor particles were employed as the bed material. Particle size was 22 μm and particle density was 3,938 kg/m3. CFD simulation was carried by two-fluid module which was composed of viscosity input model and fan model. CFD simulation and experiment were carried out by changing the fluidizing gas velocity and agitation velocity. The results showed that CFD simulation results in this study showed good agreement with experimental data. From results of CFD simulation, it was observed that the agitation prevents agglomeration of fine particles in a fluidized bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Samuelsberg and B. H. Hjertager, AIChE J., 42, 1536 (1996).

    Article  CAS  Google Scholar 

  2. V. Mathiesen, T. Solberg, H. Arastoopour and B. Hjertager, AIChE J., 45, 2503 (1998).

    Article  Google Scholar 

  3. H. Arastoopour and D. Gidaspow, Powder Technology, 22, 77 (1979).

    Article  Google Scholar 

  4. Y. P. Tsuo and D. Gidaspow, AIChE J., 36, 885 (1990).

    Article  CAS  Google Scholar 

  5. D. Gidaspow, Appl. Mech. Rev., 39(1), 1 (1986).

    Article  Google Scholar 

  6. R. W. Lyczkowsky, S. Folga, S. L. Chang, J. X. Bouillard, C. S. Wang, G. F. Berry and D. Gidaspow, Can. Chem. Eng., 67, 465 (1989).

    Google Scholar 

  7. J. Ding and R. W. Lyczkowski, Powder Technology, 73, 127 (1992).

    Article  CAS  Google Scholar 

  8. P. Kostamis, C. W. Richards and N. C. Markatos, PhysicoChem. Hydrody., 9, 219 (1987).

    CAS  Google Scholar 

  9. K. N. Theologos and N. C. Markatos, Trans. IchemE., 70,Part A, 239 (1992).

    CAS  Google Scholar 

  10. K. N. Theologos and N. C. Markatos, AIChE J., 39(6), 1007 (1993).

    Article  CAS  Google Scholar 

  11. D. Mantonis, D. Gidaspow and M. Bahary, AIChE J., 48(7), 1413 (2002).

    Article  Google Scholar 

  12. J. M. Zalc, E. S. Szalai, M. M. Alvarez and F. J. Muzzio, AIChE J., 48(10), 2124 (2002).

    Article  CAS  Google Scholar 

  13. A. Ortiz-Arroyo, F. Larachi, B.P.A. Grandjean and S. Roy, AIChE J., 48(8), 1596 (2002).

    Article  CAS  Google Scholar 

  14. K. Anderson, S. Sundaresan and R. Jackson, J. Fluid Mech., 303, 327 (1995).

    Article  Google Scholar 

  15. B. Sun and D. Gidaspow, Ind. Eng. Chem. Res., 38, 787 (1999).

    Article  CAS  Google Scholar 

  16. S. Benyahia, H. Arastoopour and T. Knowlton, Fluidization X, Proc. Engineering Foundation Conf. on Fluidization, L.-S. Fan and T. Knowlton, Eds., New York (1998).

  17. D. Gidaspow, Multiphase flow and fluidization: Continum and kinetic theory descriptions, Academic Press (1994).

  18. J. L. Sinclair and R. Jackson, AIChE J., 35, 1473 (1989).

    Article  CAS  Google Scholar 

  19. S. E. Elghobashi and T. W. Abou-Arab, Phys. Fluids, 26, 931 (1983).

    Article  Google Scholar 

  20. C. P. Chen, Can. J. Chem. Eng., 63, 349 (1985).

    Article  CAS  Google Scholar 

  21. Z. Wang, M. Kwauk and H. Li, Chem. Eng. Sci., 53(3), 377 (1998).

    Article  CAS  Google Scholar 

  22. R. W. Lyczkowsky, I. K. Gamwo, F. Dobran, H. Ali, B. T. Chao, M. M. Chen and D. Gidaspow, Powder Technology, 76, 65 (1993).

    Article  Google Scholar 

  23. J. Ding and D. Gidaspow, AIChE J., 36(4), 523 (1990).

    Article  CAS  Google Scholar 

  24. B. H. Xu and A. B. Yu, Chem. Eng. Sci., 52(16), 2785 (1997).

    Article  CAS  Google Scholar 

  25. C. C. Pain, S. Mansoorzadeh, J. L. M. Gomes and C. R. E. de Oliveira, Powder Technology, 128, 56 (2002).

    Article  CAS  Google Scholar 

  26. S. B. Savaqe, Theory of dispersed multiphase flow, R. E. Meyer, Eds., Academic Press, New York (1983).

    Google Scholar 

  27. Y. Mawatari, Y. Tatemoto and K. Noda, Powder Technology, 131, 66 (2003).

    Article  CAS  Google Scholar 

  28. K. Malhotra, L. Law-Kwet-Cheong and A. S. Mujumdar, Powder Technology, 39, 101 (1984).

    Article  Google Scholar 

  29. J. Park, J. Kim, S.-H. Cho, K.-H. Han, C.-K. Yi and G.-T. Jin, Korean J. Chem. Eng., 16, 659 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Young Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Han, G.Y. Simulation of bubbling fluidized bed of fine particles using CFD. Korean J. Chem. Eng. 24, 445–450 (2007). https://doi.org/10.1007/s11814-007-0077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0077-8

Key words

Navigation