Skip to main content
Log in

Effect of cocatalyst on the chemical composition distribution and microstructure of ethylene-hexene copolymer produced by a metallocene/Ziegler-Natta hybrid catalyst

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for metallocene/Ziegler-Natta hybrid catalyst. The SMB was treated with methylaluminoxane (MAO) prior to the immobilization of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was applied to the ethylenehexene copolymerization with a variation of cocatalyst species (polymerization run 1: triisobutylaluminum (TIBAL) and methylaluminoxane (MAO), polymerization run 2: triethylaluminum (TEA) and methylaluminoxane (MAO)). The effect of cocatalysts on the chemical composition distributions (CCDs) and microstructures of ethylene-hexene copolymers was examined. It was found that the catalytic activity in polymerization run 1 was a little higher than that in polymerization run 2, because of the enhanced catalytic activity at the initial stage in polymerization run 1. The chemical composition distributions (CCDs) in the two copolymers showed six peaks and exhibited a similar trend. However, the lamellas in the ethylene-hexene copolymer produced in polymerization run 1 were distributed over smaller sizes than those in the copolymer produced in polymerization run 2. It was also revealed that the rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced the ethylene-hexene copolymer with non-blocky sequence when TEA and MAO were used as cocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Cho and W. Y. Lee, Korean J. Chem. Eng., 19, 557 (2002).

    Article  CAS  Google Scholar 

  2. A. J. Müller, Z. H. Hernandez, M. L. Arnal and J. Sábchez, J. Polym. Bull., 39, 465 (1997).

    Article  Google Scholar 

  3. W. Kaminsky and H. Sinn, Adv. Organometal. Chem., 18, 99 (1980).

    Article  Google Scholar 

  4. J. S. Yoon, J. K. Oh, K. P. Hong and I. M. Lee, Korean J. Chem. Eng., 13, 207 (1996).

    Article  CAS  Google Scholar 

  5. B. G. Jeong, D. W. Nam, S. D. Hong, S. G. Lee, Y. W. Park and K. H. Song, Korean J. Chem. Eng., 20, 22 (2003).

    Article  CAS  Google Scholar 

  6. T. E. Nowlin, S. D. Schregenberger, P. P. Shirodkar and G. O. Tsien, US Patent, 5,539,076 (1996).

  7. A. Razavi, US Patent, 5,914,289 (1999).

  8. M. Jezequel, V. Dufaud, M. J. R. Garcia, F. C. Hermosilla, U. Neugebauer, G. P. Niccolai, F. Lefebvre, F. Bayard, J. Corker, S. Fiddy, J. Evans, J. P. Broyer, J. Malings and J. M. Basset, J. Am. Chem. Soc., 123, 3520 (2001).

    Article  CAS  Google Scholar 

  9. J. Tian, S. Wang, Y. Feng, J. Li and S. Collins, J. Mol. Catal. A, 144, 137 (1999).

    Article  CAS  Google Scholar 

  10. K. Soga and M. Kaminaka, Macromol. Chem. Rapid Comm., 13, 221 (1992).

    Article  CAS  Google Scholar 

  11. K. Soga and M. Kaminaka, Macromol. Chem. Phys., 195, 1369 (1994).

    Article  CAS  Google Scholar 

  12. H. S. Cho, J. S. Chung and W. Y. Lee, J. Mol. Catal. A, 159, 203 (2000).

    Article  CAS  Google Scholar 

  13. H. S. Cho, Y. H. Choi and W. Y. Lee, Catal. Today, 63, 523 (2000).

    Article  CAS  Google Scholar 

  14. H. S. Cho, J. S. Chung, J. H. Han, Y. G. Ko and W. Y. Lee, J. Appl. Polym. Sci., 70, 1707 (1998).

    Article  CAS  Google Scholar 

  15. H. S. Cho and W. Y. Lee, J. Mol. Catal. A, 191, 155 (2003).

    Article  CAS  Google Scholar 

  16. J. S. Chung, H. S. Cho, G. Y. Ko and W. Y. Lee, J. Mol. Catal. A, 144, 61 (1999).

    Article  CAS  Google Scholar 

  17. Y. G. Ko, H. S. Cho, K. H. Choi and W. Y. Lee, Korean J. Chem. Eng., 16, 562 (1999).

    Article  CAS  Google Scholar 

  18. H. S. Cho, D. J. Choi and W. Y. Lee, J. Appl. Polym. Sci., 78, 2318 (2000).

    Article  CAS  Google Scholar 

  19. H. S. Cho, K. H. Choi, D. J. Choi and W. Y. Lee, Korean J. Chem. Eng., 17, 205 (2000).

    Article  CAS  Google Scholar 

  20. S. Charoenchaidet, S. Chavadej and E. Gulari, J. Polym. Sci. Polym. Chem., 40, 3240 (2002).

    Article  CAS  Google Scholar 

  21. Q. Wang, L. Li and Z. Fan, J. Polym. Sci. Polym. Chem., 43, 1599 (2005).

    Article  CAS  Google Scholar 

  22. E. T. Hsieh and J. C. Randall, Macromolecules, 15, 1402 (1982).

    Article  CAS  Google Scholar 

  23. L. Wild, T. R. Ryle, D. C. Knobeloch and I. R. Peat, J. Polym. Sci. Polym. Chem., 20, 441 (1982).

    CAS  Google Scholar 

  24. P. Starch, Polym. Int., 40, 111 (1996).

    Article  Google Scholar 

  25. K. Czaja, B. Sacher and M. Bialek, J. Therm. Anal. Catal., 67, 547 (2002).

    Article  CAS  Google Scholar 

  26. H. W. Park, J. S. Chung, S. H. Baeck and I. K. Song, J. Mol. Catal. A, 255, 69 (2006).

    Article  CAS  Google Scholar 

  27. D. Hosoda, Polym. J., 20, 383 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.W., La, K.W., Chung, J.S. et al. Effect of cocatalyst on the chemical composition distribution and microstructure of ethylene-hexene copolymer produced by a metallocene/Ziegler-Natta hybrid catalyst. Korean J. Chem. Eng. 24, 403–407 (2007). https://doi.org/10.1007/s11814-007-0069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0069-8

Key words

Navigation