Skip to main content
Log in

Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation

  • Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This work focused on the preparation of activated carbon from eucalyptus and wattle wood by physical activation with CO2. The preparation process consisted of carbonization of the wood samples under the flow of N2 at 400°C and 60 min followed by activating the derived chars with CO2. The activation temperature was varied from 600 to 900°C and activation time from 60 to 300 min, giving char burn-off in the range of 20/2-83%. The effect of CO2 concentration during activation was also studied. The porous properties of the resultant activated carbons were characterized based on the analysis of N2 adsorption isotherms at −196°C. Experimental results showed that surface area, micropore volume and total pore volume of the activated carbon increased with the increase in activation time and temperature with temperature exerting the larger effect. The activated carbons produced from eucalyptus and wattle wood had the BET surface area ranging from 460 to 1,490 m2/g and 430 to 1,030 m2/g, respectively. The optimum activation conditions that gave the maximum in surface area and total pore volume occurred at 900°C and 60 min for eucalyptus and 800°C and 300 min for wattle wood. Under the conditions tested, the obtained activated carbons were dominated with micropore structure (∼80% of total pore volume).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadpour, A. and Do, D. D., “The preparation of activated carbons from coal by chemical and physical activation,” Carbon, 34, 471 (1996).

    Article  CAS  Google Scholar 

  • Ahmadpour, A. and Do, D. D., “The preparation of activated carbon from macadamia nutshell by chemical activation,” Carbon, 35, 1723 (1997).

    Article  CAS  Google Scholar 

  • Arriagada, R., García, R., Molina-Sabio, M. and Rodríguez-Reinoso, F., “Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalyptus globulus and peach stones,” Microporous Mater., 8, 123 (1997).

    Article  CAS  Google Scholar 

  • Caramuscio, P., Stefano, L.D., Seggiani, M., Vitolo, S. and Narducci, P., “Preparation of activated carbons from heavy-oil fly ashes,” Waste Manag., 23, 345 (2003).

    CAS  Google Scholar 

  • Chang, C. F., Chang, C.Y. and Tsai, W. T., “Effects of burn-off and activation temperature on preparation of activated carbon from corn Cob agrowaste by CO2 and steam,” J. Coll. Int. Sci., 232, 45 (2000).

    Article  CAS  Google Scholar 

  • Darmstadt, H., Garcia-Perez, M., Chaala, A., Cao, N. Z. and Roy, C., “Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue properties of the char and activated char products,” Carbon, 39, 815 (2001).

    Article  CAS  Google Scholar 

  • Daud, W. M. A.W. and Ali, W. S.W., “Comparison on pore development of activated carbon produced from palm shell and coconut shell,” Biores. Technol., 93, 63 (2004).

    Article  CAS  Google Scholar 

  • Do, D. D., Adsorption analysis: Equilibria and kinetics, Imperial College Press, Singapore (1998).

    Google Scholar 

  • Durán-Valle, C. J., Gómez-Corzo, M., Pastor-Villegas, J. and Gómez-Serrano, V., “Study of cherry stones as raw material in preparation of carbonaceous adsorbents,” J. Anal. Appl. Pyrol., 73, 49 (2005).

    Google Scholar 

  • Howe-Grant, M., Encyclopedia of chemical technology, John Wiley & Sons, New York (1992).

    Google Scholar 

  • Ismadji, S., Sudaryanto, Y., Hartono, S.B., Setiawan, L. E. K. and Ayucitra, A., “Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization,” Biores. Technol., 96, 1364 (2005).

    Article  CAS  Google Scholar 

  • Jagtoyen, M. and Derbyshire, F., “Activated carbon from yellow poplar and white oak by H3PO4 activation,” Carbon, 36, 1085 (1998).

    Article  CAS  Google Scholar 

  • Jiménez, L., García, J. C., Pérez, I., Ariza, J. and López, F., “Acetone pulping of wheat straw. influence of the cooking and beating conditions on the resulting paper sheets,” Ind. Eng. Chem. Res., 40, 6201 (2001).

    Article  Google Scholar 

  • Kim, S. H., Bidkar, A., Ngo, H.H., Vigneswaran, S. and Moon, H., “Adsorption and mass transfer characteristics of metsulfuron-methyl on activated carbon,” Korean J. Chem. Eng., 18, 163 (2001).

    Article  CAS  Google Scholar 

  • Kim, S. J., Cho, S.Y. and Kim, T.Y., “Adsorption of chlorinated volatile organic compounds in a fixed bed of activated carbon,” Korean J. Chem. Eng., 19, 61 (2002).

    Article  CAS  Google Scholar 

  • Kim, J.-H., Wu, S. H. and Pendleton, P., “Effect of surface properties of activated carbons on surfactant adsorption kinetics,” Korean J. Chem. Eng., 22, 705 (2005).

    Article  CAS  Google Scholar 

  • Lastoskie, C., Gubbins, K. E. and Quirke, N., “Pore size distribution analysis of microporous carbons: A density functional theory approach,” J. Phys. Chem. B, 97, 4786 (1993).

    Article  CAS  Google Scholar 

  • Lee, B.-G. and Rowell, R. M., “Removal of heavy metal ions from aqueous solutions using lignocellulosic fibers,” J. Natural Fibers, 1, 97 (2004).

    Article  CAS  Google Scholar 

  • Lua, A. C. and Guo, J., “Activated carbon prepared from oil palm stone by one-step CO2 activation for gaseous pollutant removal,” Carbon, 38, 1089 (2000).

    Article  CAS  Google Scholar 

  • Moon, D. J., Chung, M. J., Kim, H., Lee, B. G., Lee, S. D. and Park, K.Y., “Adsorption equilibria of chloropentafluoroethane on activated carbon powder,” Korean J. Chem. Eng., 15, 619 (1998).

    Article  CAS  Google Scholar 

  • Oh, G. H. and Park, C. R., “Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity,” Fuel, 81, 327 (2002).

    Article  CAS  Google Scholar 

  • Olivier, J. P., “Modeling physical adsorption on porous and nonporous solids using density functional theory,” J. Porous Mater., 2, 9 (1995).

    Article  CAS  Google Scholar 

  • Ouajai, S. and Shanks, R. A., “Composition, structure and thermal degradation of hemp cellulose after chemical treatments,” Polym. Degrad. Sta., 89, 327 (2005).

    Article  CAS  Google Scholar 

  • Patrick, J.W., Porosity in carbons: characterization and applications, Edward Arnold, London (1995).

    Google Scholar 

  • Sainz-Diaz, C. I. and Griffiths, A. J., “Activated carbon from solid wastes using a pilot-scale batch flaming pyrolyser,” Fuel, 79, 1863 (2000).

    Article  CAS  Google Scholar 

  • Sánchez, A. R., Elguézabal, A.A. and Saenz, L. L. T., “CO2 activation of char from Quercus Agrifolia wood waste,” Carbon, 39, 1367 (2001).

    Article  Google Scholar 

  • Tancredi, N., Cordero, T., Rodríguez-Mirasol, J. and Rodríguez, J. J., “Activated carbons from uruguayan eucalyptus wood,” Fuel, 75, 1701 (1996).

    Article  CAS  Google Scholar 

  • Turmuzi, M., Daud, W. R.W., Tasirin, S. M., Takriff, M. S. and Iyuke, S. E., “Production of activated carbon from candlenut shell by CO2 activation,” Carbon, 42, 453 (2004).

    Article  CAS  Google Scholar 

  • Xiao, B. and Thomas, K.M., “Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons,” Langmuir, 21, 3892 (2005).

    Article  CAS  Google Scholar 

  • Yang, T. and Lua, A. C., “Characteristics of activated carbons prepared from pistachio-nut shells by physical activation,” J. Coll. Int. Sci., 267, 408 (2003).

    Article  CAS  Google Scholar 

  • Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D. and Brown, R. C., “Preparation of activated carbon from forest and agricultural residues through CO2 activation,” Chem. Eng. J., 105, 53 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaiyot Tangsathitkulchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngernyen, Y., Tangsathitkulchai, C. & Tangsathitkulchai, M. Porous properties of activated carbon produced from Eucalyptus and Wattle wood by carbon dioxide activation. Korean J. Chem. Eng. 23, 1046–1054 (2006). https://doi.org/10.1007/s11814-006-0028-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0028-9

Key words

Navigation