Skip to main content

Advertisement

Log in

Correlation of vapor-liquid equilibria for binary mixtures with free energy-based equation of state mixing rules: Carbon dioxide with alcohols, hydrocarbons, and several other compounds

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The correlation of vapor-liquid equilibrium data for high-pressure carbon dioxide systems is of interest in a number of industrial applications, including supercritical extraction. Here, we consider the correlation of data for 12 binary systems of carbon dioxide separately with alcohols, with hydrocarbons, and with acetone, benzene, and water. The Wong-Sandler (W-S) and modified Huron — Vidal first order (MHV1) free energy-based equation of state mixing rules (the W-S and MHV1 models) were used in the calculations. Both combined equation of state+free energy models generally resulted in good correlations of the experimental data over wide ranges of temperature and pressure with temperature — independent parameters. However, for the carbon dioxide+water system, the W-S model produced an 11% average absolute deviation in pressure, while no parameter that resulted in an AAD in pressure of less than 20% could be found for the MHV1 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, D. S. and Prausnitz, J. M., “Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of completely miscible systems,” AIChE J., 21, 116 (1975).

    Article  CAS  Google Scholar 

  • Adachi, Y. and Sugie, H., “A new mixing rule-modified conventional mixing rule,” Fluid Phase Equil., 28, 103 (1986).

    Article  CAS  Google Scholar 

  • Berro, C., Barna, L. and Rauzy, E., “A group-contribution equation of state for predicting vapor-liquid equilibria and volumetric properties of carbon dioxide-hydrocarbons systems,” Fluid Phase Equil., 114, 63 (1996).

    Article  CAS  Google Scholar 

  • Besserer, G. J. and Robinson, D. B., “Equilibrium-phase properties of n-pentane-carbon dioxide system,” J. Chem. Eng. Data, 18, 416 (1973).

    Article  CAS  Google Scholar 

  • Boukouvlas, C., Spiliotis, N., Coutsikos, P. and Tzouvaras, N., “Prediction of vapor-liquid equilibrium with the LCVM model. A linear combination of the huron-vidal and michelsen mixing rules coupled with the original UNIFAC and the t-mPR equation of state,” Fluid Phase Equil., 92, 75 (1994).

    Article  Google Scholar 

  • Cassel, E., Matt, M., Rogalski, M. and Solimando, R., “Phase equilibria modelling for binary systems that contain CO2,” Fluid Phase Equil., 134, 63 (1997).

    Article  CAS  Google Scholar 

  • Cheng, H., de Fernandez, M. E. P., Zollweg, J. A. and Streett, W.B., “Vapor-liquid equilibrium in the system carbon dioxide+n-pentane from 252 to 458 K at pressures to 10Mpa,” J. Chem. Eng. Data, 34, 319 (1989).

    Article  CAS  Google Scholar 

  • Chou, G. F., Forbert, R. R. and Prausnitz, J.M., “High-pressure vapor-liquid equilibria for CO2/n-decane, CO2/tetralin, and CO2/n-decane/tetralin at 71.1 and 104.4 °C,” J. Chem. Eng. Data, 35, 26 (1990).

    Article  CAS  Google Scholar 

  • Dahl, S. and Michelsen, M. L., “High-pressure vapor-liquid equilibrium with a UNIFAC based equation of state,” AIChE J., 36, 1829 (1990).

    Article  CAS  Google Scholar 

  • Day, C.-Y., Chang, C. J. and Chen, C.-Y., “Phase equilibrium of ethanol+CO2 and acetone+CO2 at elevated pressures,” J. Chem. Eng. Data, 41, 839 (1996).

    Article  CAS  Google Scholar 

  • Gupta, M. K., Li, Y.-H., Hulsey, B. J. and Robinson, Jr., R. L., “Phase equilibrium for carbon dioxide-benzene at 313.2, 353.2, and 393.2K,” J. Chem. Eng. Data, 27, 55 (1982).

    Article  CAS  Google Scholar 

  • Hong, J. H. and Kobayashi, R., “Vapor-liquid equilibrium studies for the carbon dioxide-methanol system,” Fluid Phase Equil., 41, 269 (1988).

    Article  CAS  Google Scholar 

  • Huron, M. and Vidal, J., “New mixing rules in simple equations of state for representing vapor-liquid equilibria of non-ideal mixtures,” Fluid Phase Equil., 3, 255 (1979).

    Article  CAS  Google Scholar 

  • Inomata, H., Tuchiya, K., Arai, K. and Saito, S., “Measurement of vapor-liquid equilibria at elevated temperatures and pressures using a flow type apparatus,” J. Chem. Eng. Japan, 19, 386 (1986).

    Article  CAS  Google Scholar 

  • Ishihara, K., Tsukajima, A., Tanaka, H., Kato, M., Sako, T., Sato, M. and Hakuta, T., “Vapor-liquid equilibrium for carbon dioxide+1-butanol at high pressure,” J. Chem. Eng. Data, 41, 324 (1996).

    Article  CAS  Google Scholar 

  • Jenning, D.W., Leem, R.-J. and Teja, A. S., “Vapor-liquid equilibria in the carbon dioxide+ethanol and carbon dioxide+1-butanol systems,” J. Chem. Eng. Data, 36, 303 (1991).

    Article  Google Scholar 

  • Kalra, H., Kubota, H., Robinson, D.B. and Ng, H.-J., “Equilibrium phase properties of the carbon dioxide+n-heptane system,” J. Chem. Eng. Data, 23, 317 (1978).

    Article  CAS  Google Scholar 

  • Kaminishi, G.-I., Yokoyama, C. and Takahadhi, S., “Vapor pressures of binary mixtures of carbon dioxide with benzene, n-hexane and cyclohexane up to 7MPa,” Fluid Phase Equil., 34, 83 (1987).

    Article  CAS  Google Scholar 

  • Knapp, H., Doring, R., Oellrich, L., Plocker, U. and Prausnitz, J.M., “Vapor-liquid equilibria for mixtures of low boiling substances,” DECHEMA Chemistry Data Series Vol. VI (1982).

  • Katayama, T., Ohgaki, K., Maekawa, G., Goto, M. and Nagano, T., “Isothermal vapor-liquid equilibria of acetone-carbon dioxide and methanol-carbon dioxide systems at high pressure,” J. Chem. Eng. Japan, 8, 89 (1975).

    Article  CAS  Google Scholar 

  • Kato, M., Aizawa, K., Kanahira, T. and Ozawa, T., “A new experimental method of vapor-liquid equilibria at high pressures,” J. Chem. Eng. Japan, 24, 767 (1991).

    Article  CAS  Google Scholar 

  • Leu, A.-D., Chung, S. Y.-K. and Robinson, D. B., “The equilibrium phase properties of (carbon dioxide+methanol),” J. Chem. Thermodynamics, 23, 979 (1991).

    Article  CAS  Google Scholar 

  • Li, Y.-H., Dillard, K. H. and Robinson, Jr., R. L., “Vapor-liquid phase equilibrium for carbon dioxide+n-hexane at 40, 80, and 120 °C,” J. Chem. Eng. Data, 26, 53 (1981).

    Article  CAS  Google Scholar 

  • Maehias, P. M. and Copeman, T.W., “Extension of Peng-Robinson equation of state to polar fluid mixtures,” Fluid Phase Equil., 13, 91 (1983).

    Article  Google Scholar 

  • Michelsen, M. L., “A modified huron-vidal mixing rule for cubic equations of state,” Fluid Phase Equil., 60, 213 (1990).

    Article  CAS  Google Scholar 

  • Mulero, A., Larrey, D. and Cuadros, F. A., “New correlation for VLE data: Application to binary mixtures containing nitrogen,” Korean J. Chem. Eng., 23, 650 (2006).

    Article  CAS  Google Scholar 

  • Muller, G., Bender, E. and Maurer, G., “Das dampf-flussigkeitsgleich-gewicht des ternaren systems ammoniak-kohlendioxid-wasser bei hohen wassergehalten im bereich zwischen 373 und 473 kevin,” Ber. Bunsenges, Phys. Chem., 92, 148 (1988).

    Google Scholar 

  • Nagarajan, N. and Robinsom, Jr., R. L., “Equilibrium phase compositions, phase densities, and interfacial tensions for CO2+hydrocarbon systems. 2. CO2+n-cecane,” J. Chem. Eng., Data, 31, 168 (1986).

    Article  CAS  Google Scholar 

  • Ohfaki, K. and Katayama, T., “Isothermal vapor-liquid equilibrium data for binary systems containing carbon dioxide at high pressures: Methanol+carbon dioxide, n-hexane+carbon dioxide, and benzene +carbon dioxide systems,” J. Chem. Eng. Data, 21, 53 (1976).

    Article  Google Scholar 

  • Peng, D.Y. and Robinson, D.B., “A new two constant equation of state,” Ind. Eng. Chem. Fundam., 15, 59 (1976).

    Article  CAS  Google Scholar 

  • Radosz, M., “Vapor-liquid equilibrium for 2-propanol and carbon dioxide,” J. Chem. Eng. Data, 31, 43 (1986).

    Article  CAS  Google Scholar 

  • Renon, H. and Prausnitz, J.M., “Local compositions in thermodynamics excess functions for liquid mixtures,” AIChE J., 14, 135 (1968).

    Article  CAS  Google Scholar 

  • Sebastian, H. M., Simnick, J. J., Lin, H.-M. and Chao, K.-C., “Vapor-liquid equilibrium in binary mixtures if carbon dioxide+n-decane and carbon dioxide+n-hexadecane,” J. Chem. Eng. Data, 25, 138 (1980).

    Article  CAS  Google Scholar 

  • Semenova, A. I., Emel’yaniva, E. A., Tsimmerman, S. S. and Tsiklis, D. S., “Phase equilibria in the methanol-carbon dioxide system,” Russ. J. Phys. Chem., 53, 2502 (1979).

    CAS  Google Scholar 

  • Shibata, S. K. and Sandler, S. I., “High-pressure vapor-liquid equilibria of mixtures of nitrogen, carbon dioxide, and cyclohexane,” J. Chem. Eng. Data, 34, 419 (1989).

    Article  CAS  Google Scholar 

  • Shin, M. S., Yoo, K. P., Lee, C. S. and Kim, H., “A multi-fluid nonrandom lattice fluid model: mixtures,” Korean J. Chem. Eng., 23, 476 (2006).

    Article  CAS  Google Scholar 

  • Shyu, G.-S., Hanif, N. S.M., Hall, K.R. and Eubank, P.T., “Carbon dioxide-water phase equilibria results from the wong-sandler combining rules,” Fluid Phase Equil., 130, 73 (1997).

    Article  CAS  Google Scholar 

  • Stryjk, R. and Vera, J. H., “An improved Peng-Robinson equation of state for pure components and for mixtures,” Can. J. Chem. Eng., 64, 323 (1986).

    Article  Google Scholar 

  • Suzuki, K. and Sue, H., “Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-propanol, ethane-ethanol, and ethane-1-propanol systems,” J. Chem. Eng. Data, 35, 63 (1990).

    Article  CAS  Google Scholar 

  • Takenouchi, S. and Kennedy, G. C., “The binary system H2O-CO2 at high temperatures and pressures,” Amer. J. Sci., 262, 1055 (1964).

    CAS  Google Scholar 

  • Takishima, S., Saiki, K., Arai, K. and Saito, S., “Phase equilibria for CO2C2H5OH-H2O system,” J. Chem. Eng. Japan, 19, 48 (1986).

    Article  CAS  Google Scholar 

  • Tanaka, H. and Kato, M., “Vapor-liquid equilibrium properties of carbon dioxide+ethanol mixture at high pressures,” J. Chem. Eng. Japan, 28, 263 (1995).

    Article  CAS  Google Scholar 

  • Traub, P. and Stephan, K., “High-pressure phase equilibria of the system CO2-water-acetone measured with a new apparatus,” Chem. Eng. Sci., 45, 751 (1990).

    Article  CAS  Google Scholar 

  • Wagner, Z. and Wichterle, I., “High-pressure vapour-liquid equilibrium in systems containing carbon dioxide, 1-hexene, and n-hexane,” Fluid Phase Equil., 33, 109 (1987).

    Article  CAS  Google Scholar 

  • Wilson, G.M., “Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing,” J. Am. Chem. Soc., 86, 127 (1964).

    Article  CAS  Google Scholar 

  • Wong, D. S. H. and Sandler, S. I., “A theoretically correct mixing rule for cubic equation of state,” AIChE J., 38, 671 (1992).

    Article  CAS  Google Scholar 

  • Yaginuma, R., Nakajima, T., Tanaka, H. and Kato, M., “Densities of carbon dioxide+2-propanol at 313.15 K and pressures to 9.8MPa,” J. Chem. Eng. Data, 42, 814 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Soo Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, C., Sandler, S.I. & Byun, HS. Correlation of vapor-liquid equilibria for binary mixtures with free energy-based equation of state mixing rules: Carbon dioxide with alcohols, hydrocarbons, and several other compounds. Korean J. Chem. Eng. 23, 1016–1022 (2006). https://doi.org/10.1007/s11814-006-0023-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0023-1

Key words

Navigation