Skip to main content
Log in

Phase behavior of water-insoluble simvastatin drug in supercritical mixtures of chlorodifluoromethane and carbon dioxide

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Phase behavior data are presented for simvastatin, a water-insoluble drug, in supercritical solvent mixtures of chlorodifluoromethane (CHClF2) and carbon dioxide (CO2). The solubilities of the simvastatin drug in the solvent mixtures of CHClF2 and CO2 were determined by measuring the cloud point pressures using a variable-volume view cell apparatus as functions of temperature, solvent composition, and amount of the drug loaded into the solution. The cloud point pressure increased with increasing the system temperature. As the CHClF2 composition in the solvent mixture increased, the cloud point pressure at a fixed temperature decreased. Addition of CHClF2 to CO2 caused an increase of the dissolving power of the mixed solvent for the simvastatin drug due to the increase of the solvent polarity. CHClF2 acted as a solvent for simvastatin, while CO2 acted as an anti-solvent. The cloud point pressure increased as the amount of the simvastatin drug in the solvent mixture increased. Consequently, the solubility of the simvastatin drug in the solvent mixture of CHClF2 and CO2 decreased with increasing the CO2 content in the solvent mixture as well as with increasing the system temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakhbakhi, Y., Charpentier, P.A. and Rohani, S., “Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery,” Int. J. Pharmaceutics, 309, 71 (2006).

    Article  CAS  Google Scholar 

  • Datea, A. A. and Patravale, V. B., “Current strategies for engineering drug nanoparticles,” Current Opinion in Colloid & Interface Science, 9, 222 (2004).

    Article  Google Scholar 

  • Duarte, A. R.C., Costa, M. S., Simplicio, A. L., Cardoso, M. M. and Duarte, C. M. M., “Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs,” Int. J. Pharmaceutics, 308, 168 (2006).

    Article  CAS  Google Scholar 

  • Fages, J., Lochard, H., Letourneau, J.-J., Sauceau, M. and Rodier, E., “Particle generation for pharmaceutical applications using supercritical fluid technology,” Powder Technol., 141, 219 (2004).

    Article  CAS  Google Scholar 

  • Ginty, P. J., Whitaker, M. J., Shakesheff, K. M. and Howdle, S. M., “Drug delivery goes supercritical,” Materials Today, 8,Supplement 1, 42 (2005).

    Article  Google Scholar 

  • Guney, O. and Akgerman, A., “Synthesis of controlled-release products in supercritical medium,” AIChE J., 48, 856 (2002).

    Article  CAS  Google Scholar 

  • Huang, Z., Sun, G.-B., Chiew, Y.C. and Kawi, S., “Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS),” Powder Technol., 160, 127 (2005).

    Article  CAS  Google Scholar 

  • Kerc, J., Srcic, S., Knez, Z. and Sencar-Bozic, P., “Micronization of drugs using supercritical carbon dioxide,” Int. J. Pharmaceutics, 182, 33 (1999).

    Article  CAS  Google Scholar 

  • Kwak, H., Jung, J.W., Bae, S.Y. and Kumazawa, H., “Preparation of anthracene fine particles by rapid expansion of a supercritical solution process utilizing supercritical CO2,” Korean J. Chem. Eng., 21, 1245 (2004).

    Article  CAS  Google Scholar 

  • Lee, B.-C. and Kim, N.-I., “Phase equilibria of poly(methyl methacrylate) in supercritical mixtures of carbon dioxide and chlorodifluoromethane,” Korean J. Chem. Eng., 19, 132 (2002).

    Article  CAS  Google Scholar 

  • Lee, J.M., Lee, B.-C. and Hwang, S.-J., “Phase behavior of poly(L-lactide) in supercritical mixtures of carbon dioxide and chlorodifluoromethane,” J. Chem. Eng. Data, 45, 1162 (2000).

    Article  CAS  Google Scholar 

  • Lee, J. M., Lim, J. S. and Lee, Y.-W., “Effect of solvent composition and polymer molecular weight on cloud points of poly(L-lactide) in chlorodifluoromethane+carbon dioxide,” J. Chem. Eng. Data, 48, 774 (2003).

    Article  CAS  Google Scholar 

  • Miguel, F., Martin, A., Gamse, T. and Cocero, M. J., “Supercritical anti-solvent precipitation of lycopene: effect of the operating parameters,” J. Supercrit. Fluids, 36, 225 (2006).

    Article  CAS  Google Scholar 

  • Perrut, M., Jung, J. and Leboeuf, F., “Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles,” Int. J. Pharmaceutics, 288, 3 (2005).

    Article  CAS  Google Scholar 

  • Reverchon, E. and Adami, R., “Nanomaterials and supercritical fluids,” J. Supercritical Fluids, 37, 1 (2006).

    Article  CAS  Google Scholar 

  • Reverchon, E. and Della Porta, G., “Micronization of antibiotics by supercritical assisted atomization,” J. Supercrit. Fluids, 26, 243 (2003).

    Article  CAS  Google Scholar 

  • Reverchon, E. and Spada, A., “Erythromycin micro-particles produced by supercritical fluid atomization,” Powder Technol., 141, 100 (2004).

    Article  CAS  Google Scholar 

  • Rodier, E., Lochard, H., Sauceau, M., Letourneau, J.-J., Freiss, B. and Fages, J., “A three step supercritical process to improve the dissolution rate of eflucimibe,” European J. Pharmaceut. Sci., 26, 184 (2005).

    Article  CAS  Google Scholar 

  • Shekunov, B.Y. and York, P., “Crystallization processes in pharmaceutical technology and drug delivery design,” J. Crystal Growth, 211, 122 (2000).

    Article  CAS  Google Scholar 

  • Song, K.H., Lee, C.-H., Lim, J. S. and Lee, Y.-W., “Preparation of LPLA submicron particles by a continuous supercritical antisolvent precipitation process,” Korean J. Chem. Eng., 19, 139 (2002).

    Article  CAS  Google Scholar 

  • Steckel, H., Pichert, L. and Muller, B.W., “Influence of process parameters in the ASES process on particle properties of budesonide for pulmonary delivery,” European J. Pharmaceutics and Biopharmaceutics, 57, 507 (2004).

    Article  CAS  Google Scholar 

  • Thakur, R. and Gupta, R. B., “Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process,” Int. J. Pharmaceutics, 308, 190 (2006).

    Article  CAS  Google Scholar 

  • Turk, M., Hils, P., Helfgen, B., Schaber, K., Martin, H.-J. and Wahl, M. A., “Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): A promising method to improve bioavailability of poorly soluble pharmaceutical agents,” J. Supercrit. Fluids, 22, 75 (2002).

    Article  CAS  Google Scholar 

  • Van Nijlen, T., Brennan, K., Van den Mooter, G., Blaton, N., Kinget, R. and Augustijns, P., “Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions,” Int. J. Pharmaceutics, 254, 173 (2003).

    Article  Google Scholar 

  • Won, D.-H., Kim, M.-S., Lee, S., Park, J.-S. and Hwang, S.-J., “Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process,” Int. J. Pharmaceutics, 301, 199 (2005).

    Article  CAS  Google Scholar 

  • Yeo, S.-D. and Kiran, E., “Formation of polymer particles with supercritical fluids: A review,” J. Supercritical Fluids, 34, 287 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, DJ., Lee, BC. & Hwang, SJ. Phase behavior of water-insoluble simvastatin drug in supercritical mixtures of chlorodifluoromethane and carbon dioxide. Korean J. Chem. Eng. 23, 1009–1015 (2006). https://doi.org/10.1007/s11814-006-0022-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0022-2

Key words

Navigation