Skip to main content
Log in

Simulation of protein adsorption in a batchwise affinity chromatography with a modified rate model

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A rate model was adapted to simulate the dynamics of protein adsorption. This model takes axial dispersion and film mass transfer into account where there is a nonlinear adsorption isotherm for protein. The model equations were solved with the application of orthogonal collocation method on finite elements. The model is validated with experimental adsorption of urokinase in a batchwise column chromatographic process. Adsorption kinetics and isotherm were measured in a batchwise operation. With the assumption of back mixing at the column inlet, the effect of the different flow pattern on the concentration change inside the column can be simulated with the rate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboudzadeh, M. R., Zhu, J.W. and Wu, B., “Modeling of protein adsorption to DEAE sepharose FF: Comparison of data with model simulation,” Korean J. Chem. Eng., 23, 124 (2006).

    Article  CAS  Google Scholar 

  • Andrade, J.D., Principles of protein adsorption. Surface and interfacial aspect of biomedical polymers, Vol (2), protein adsorption, Plenum press, New York (1985).

    Google Scholar 

  • Anspach, F. B., Johnsoton, A., Wirth, H.-J., Unger, K. K. and Hearn, M.T.W., “High-performance liquid chromatography of amino acids, peptides, and proteins: XCV,” J. Chromatogr., 499, 103 (1990).

    Article  CAS  Google Scholar 

  • Baker, J., Finite element computational fluid mechanics, McGraw-hill, New York (1983).

    Google Scholar 

  • Cao, X. J., Zhu, J.W., Wang, D.W. and Dai, G. C., “Affinity chromatography purification of Urokinase with epichlorohydrin activated agarose matrix,” Chinese J. Chem. Eng., 5(1), 69 (1997).

    CAS  Google Scholar 

  • Chen, T. L. and Hsu, J. T., “Prediction of breakthrough curves by the application of fast Fourier transform,” AIChE J., 33, 1387 (1987).

    Article  CAS  Google Scholar 

  • Chung, S. F. and Wen, C.Y., “Longitudinal dispersion of liquid flowing through fixed and fluidized beds,” AIChE J., 14, 857 (1968).

    Article  CAS  Google Scholar 

  • Dünnebier, G., Engell, S., Klatt, K.-U., Schmidt-Traub, H., Strube, J. and Weirich, I., “Modeling of simulated moving bed chromatographic process with regard to process control design,” Compu. Chem. Eng., 22, S855 (1998).

    Article  Google Scholar 

  • Guiochon, G. and Ghodbabe, S., “Computer simulation of the separation of a two-component mixture in preparative scale liquid chromatography,” J. Phys. Chem., 92, 3682 (1988).

    Article  CAS  Google Scholar 

  • Hritzko, B. J., Wooley, R. and Wang, N.-H. L., “Standing-Wave design of tandem SMB for linear multicomponent systems,” AIChE J., 48, 2769 (2002).

    Article  CAS  Google Scholar 

  • Kaczmarski, K., Antons, D., Sajonz, H., Sajonz, P. and Guiochon, G., “Comparative modeling of breakthrough curves of bovine serum albumin in anion-exchange chromatography,” J. Chromatogr., 925, 1 (2001).

    Article  CAS  Google Scholar 

  • Joukje, H., Hugo, A. H., Luuk, A.M. and van der Wielen, “Mass-transfer effects during separation of protein in SMB by size exclusion,” AIChE J., 49, 1158 (2003).

    Article  Google Scholar 

  • Lin, S. and Karger, B. L., “Reversed-phase chromatographic behavior of proteins in different unfolded states,” J. Chromatogr., 499, 89 (1990).

    Article  CAS  Google Scholar 

  • Mazsaroff, I., Cook, S. and Regnier, F. E., “Molecular orientation of immunoglobulin G at high concentration on an ion-exchange sorbent,” J. Chromatogr., 443, 119 (1988).

    Article  CAS  Google Scholar 

  • Petzold, L.R., DASSL: A differential/algebraic system solver, Lawrence Livermore National Laboratory Livermore, CA (1982).

    Google Scholar 

  • Seidel, A. and Gelbin, D., “Breakthrough curves for single solutes in beds of activated carbon with board pore-size distribution-I. Mathematical models of breakthrough curves in beds of activated carbon,” Chem. Engng. Sci., 41, 541 (1986).

    Article  CAS  Google Scholar 

  • Villadsen, J.V. and Michelsen, M. L., Solution of differential equation model by polynomial approximation, Prentice-Hall, Englewood Cliffs, New Jersey (1978).

    Google Scholar 

  • Wei, D. C., Xiao, Y. D., Shu, B. and Yan, S., “Dependence of pore diffusivity of protein on adsorption density in anion-exchange adsorbent,” Biochem. Eng. J., 14, 45 (2003).

    Article  Google Scholar 

  • Wilson, E. J. and Geankoplis, C. J., “Liquid mass transfer at very low Reynolds numbers in packed beds,” Ind. Eng. Chem. Fundam., 5, 9 (1966).

    Article  CAS  Google Scholar 

  • Whitley, R. D., Van Cott, K. E. and Wang, N.-H. L., “Analysis of nonequilibrium adsorption/desorption kinetics and implication for analytical and preparative chromatography,” Ind. Eng. Chem. Res., 32, 149 (1993).

    Article  CAS  Google Scholar 

  • Whitely, R. D., Wachter, R., Liu, F. and Wang, N.-H. L., “Ion-exchange equilibrium of lysozem, myoglobin, and bovine serum albumin: effective valence and exchanger capacity,” J. Chromatogr., 465, 137 (1989).

    Article  Google Scholar 

  • Yu, Q. and Wang, N.-H. L., “Multi component interference phenomena in ion exchange columns,” Separation and purification method, 15, 127 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Aboudzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboudzadeh, M.R., Jiawen, Z. & Bin, W. Simulation of protein adsorption in a batchwise affinity chromatography with a modified rate model. Korean J. Chem. Eng. 23, 997–1002 (2006). https://doi.org/10.1007/s11814-006-0020-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0020-4

Key words

Navigation