Skip to main content
Log in

Hydroxylic molecular interaction by measurement of ultrasonic velocity as a function of temperature: Ethanol+water+1-pentanol

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An analysis of different thermodynamic properties as a function of temperature provides valuable information about their characteristics. The ultrasonic velocity of the ternary mixtures ethanol+water+1-pentanol at the range 288.15–323.15 K and atmospheric pressure, has been measured over the whole concentration range. The experimental ultrasonic velocities have been analysed in terms of different theoretical models, an adequate agreement between the experimental and predicted values both in magnitude and sign being obtained, despite the high non-ideal trend and partial miscibility of the ternary mixture studied in this work. The obtained experimental values indicate varying extent of interstitial accommodation among unlike molecules as a function of steric hindrance attending to 1-pentanol as key component and as a function of hydrogen bond and temperature attending to ethanol as key component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bevington. P., Data reduction and error analysis for the physical sciences, McGraw-Hill, New York (1969).

    Google Scholar 

  • Cibulka, I., “A relation between excess volume and the form of the dependence of density on composition for binary-liquid mixtures,” Coll. Czech. Chem. Comm., 55(7), 1653 (1990).

    Article  CAS  Google Scholar 

  • Danusso, F., “Ultrasonic velocity and adiabatic compressibility of liquid mixtures,” Atti Accad. Nazl. Lince.i, 10, 235 (1951).

    CAS  Google Scholar 

  • Eyring, H. and Kincaid, J. F., “The activate complex in chemical reactions,” J. Chem. Phys., (USA), 6, 620 (1938).

    Google Scholar 

  • Gaiser, M., Bell, G.M., Lim, A.W., Roberts, N. A., Faraday, D. B. F., Schultz, R. A. and Grob, R., “Computer simulation of a continuous whisky still,” J. Food Eng., 51, 27 (2002).

    Article  Google Scholar 

  • Gayol, A., Iglesias, M., Concha, C.G., Goenaga, J.M., Gonzalez, C. and Resa, J.M., “Effect of temperature on thermophysicalmagnitudes of (ethanol+aliphatic elcohols (c4–c5)) mixtures,” J. M. Phys. Chem. Liq. (2005) (submitted for publication).

  • Gonzalez, C., Iglesias, M., Lanz, J. and Resa, J.M., “Temperature dependence of excess molar volumes in (n-alkane (C-6–C-9) or alcohol (C-2–C-4)) plus olive oil mixtures,” Thermochimica Acta., 328, 277 (1999).

    Article  CAS  Google Scholar 

  • Jacobson, B., “Intermolecular free lengths in the liquid state. 1. Adiabatic and isothermal compressibilities,” Acta Chemica Scandinavica, 6, 1485 (1952).

    Article  CAS  Google Scholar 

  • Marquardt, D.W., “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl., Math 2, 431 (1963).

    Article  Google Scholar 

  • Nomoto, O., “Empirical formula for sound velocity in liquid mixtures,” J. Phys. Soc. Japan, 13, 1528 (1968).

    Google Scholar 

  • Nutsch-kuhnkies, R., “Sound characteristics in binary mixtures and solutions,” Acustica, 15, 383 (1965).

    CAS  Google Scholar 

  • Orge, B., Iglesias, M., Marino, G., Dominguez, M., Piñiro, M. and Tojo, J., “Mixing properties of benzene+2-methyl-2-butanol+1-pentanol at 298.15 K. Experimental results and comparison between ERAS model and cubic EOS estimations for excess molar volumes,” J. Fluid Phase Eq., 170, 151 (2000).

    Article  CAS  Google Scholar 

  • Orge, B., Iglesias, M., Rodriguez, A., Canosa, J.M. and Tojo, J., “Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15K,” Fluid Phase Eq., 133, 213 (1997).

    Article  CAS  Google Scholar 

  • Redlich, O. and Kister, A. T., “Algebraic representation of thermodynamic properties and the classification of solutions,” Ind. Eng. Chem., 40, 345 (1948).

    Article  Google Scholar 

  • Resa, J. M., Gonzalez, C., Goenaga, J.M. and Iglesias, M., “Temperature dependence of excess molar volumes of ethanol plus water plus ethyl acetate,” J. Solution Chem., 33(2), 169 (2004).

    Article  CAS  Google Scholar 

  • Schaaffs, W., Molekularakustic; eine einfuehurng in die zusammenhaenge zwischen ultrachall and molecuelstruktur in fluessigkeiten und gasen, Springer Verlag, Bonn (1963).

    Google Scholar 

  • Schaffs, W., “Problem of a theoretical calculation of velocity of sound for binary-liquid mixtures,” Acustica, 33(4), 272 (1975).

    Google Scholar 

  • Tejraj, M. A., Mirtyunjaya, I. A., Aralaguppi, B.G. and Rajashekhar, S. K., “Densities, shear viscosities, refractive-indexes, and speeds of sound of bis(2-methoxyethyl) ether with hexane, heptane, octane, and 2,2,4-trimethylpentane in the temperature interval 298.15-k-318.15-k,” J. Chem. Eng. Data, 39, 522 (1994).

    Article  Google Scholar 

  • TRC Thermodynamic Tables (Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Resa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resa, J.M., Goenaga, J.M., Concha, R.G. et al. Hydroxylic molecular interaction by measurement of ultrasonic velocity as a function of temperature: Ethanol+water+1-pentanol. Korean J. Chem. Eng. 23, 977–990 (2006). https://doi.org/10.1007/s11814-006-0018-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-006-0018-y

Key words

Navigation