Geo-spatial Information Science

, Volume 13, Issue 4, pp 275–284 | Cite as

Geo-scape, a granularity depended spatialization tool for visualizing multidimensional data sets

  • Kontaxaki Sofia
  • Kokla Margarita
  • Kavouras Marinos


Recently, the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data, on the basis of methods called spatialization methods. Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques. Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity. The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods. Furthermore, this paper introduces the prototyping tool Geo-Scape, which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity, by making use of a kernel density estimation technique and on the landscape “smoothness” metaphor. A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data, by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity.


multidimensional data spatial metaphors spatialization graphical interface kernel density estimation 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Skupin A (2000) From metaphor to method: cartographic perspectives on information visualization [C]. Proceedings of the IEEE Symposium on Information Visualization, Salt Lake City, UtahGoogle Scholar
  2. [2]
    Demsar U (2006) Data mining of geospatial data: combining visual and automatic methods [D]. Sweden: KTH — Royal Institute of TechnologyGoogle Scholar
  3. [3]
    Card S K, Mackinlay J D, Shneiderman B (1999) Trees [M]. Readings in Information Visualization. Card S K, Mackinlay J D, Shneiderman B, (Eds.). San Francisco: Morgan Kaufmann PublishersGoogle Scholar
  4. [4]
    Kuhn W, Blumenthal B (1996) Spatialization: spatial meta phors for user interfaces [R]. Reprinted Tutorial Notes from the ACM Conference on Human Factors in Computing Systems in Vancouver, GeoInfo 8, Department of Geoinformation, Technical University of ViennaGoogle Scholar
  5. [5]
    Dieberger A, Frank A U (1998) A city metaphor for supporting navigation in complex information spaces [J]. Journal of Visual Languages and Computing, 9: 597–622CrossRefGoogle Scholar
  6. [6]
    Derthick M, Christel M, Hauptmann A, et al. (2003) A cityscape visualization of video perspectives [C]. Proceedings of the National Academy of Sciences, Irvine, CAGoogle Scholar
  7. [7]
    Wettel R, Lanza M (2008) CodeCity: 3D visualization of large-scale software [C]. Companion of the 30th International Conference on Software Engineering, Leipzig, GermanyGoogle Scholar
  8. [8]
    Fabrikant S I, Buttenfield B P (2001) Formalizing semantic spaces for information access [J]. Annals of the Association of American Geographers, 91(2): 263–280CrossRefGoogle Scholar
  9. [9]
    Benking H, Judge A J N (1994) Design considerations for spatial metaphors: reflections on the evolution of viewpoint rransportation systems [OL].
  10. [10]
    Wise J A (1999) The ecological approach to text visualization [J]. Journal of the American Society for Information Science, 50(13): 1224–1233CrossRefGoogle Scholar
  11. [11]
    Boyack K W, Wylie B N, Davidson G S (2002) Domain visualization using VxInsight for science and technology management [J]. Journal of the American Society for Information Science and Technology, 53(9): 764–774CrossRefGoogle Scholar
  12. [12]
    Zavesky E, Chang S F, Yang C C (2008) Visual islands: intuitive browsing of visual search results [C]. Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval, Niagara FallsGoogle Scholar
  13. [13]
    Martinez A A, Dolado Cosin J J, Presedo Garcia C (2008) A landscape metaphor for visualization of software projects [C]. Proceedings of the 4th ACM Symposium on Software Visualization, Ammersee, GermanyGoogle Scholar
  14. [14]
    Skupin A, Buttenfield B P (1997) Spatial metaphors for display of information spaces [C]. Proceedings of the International Research Symposium on Computer-based Cartography AUTO-CARTO 13, Seattle, WAGoogle Scholar
  15. [15]
    Kontaxaki S, Tomai E, Kokla M, et al.(2010) Visualizing multidimensional data through granularity-dependent spatialization [C]. Proceedings of the SPIE Conference on Visualization and Data Analysis 2010, San Jose, CaliformiaGoogle Scholar
  16. [16]
    Kohonen T (1995) Self-organizing maps [M]. Berlin: Springer-VerlagGoogle Scholar
  17. [17]
    Joliffe I T (2002) Principal component analysis [M]. New York: Springer-VerlagGoogle Scholar
  18. [18]
    Mardia K V, Kent J T, Bibby J M (1980) Multivariate analysis (probability and mathematical statistics) [M]. London: Academic PressGoogle Scholar
  19. [19]
    Ultsch A (1993) Self-organizing neural networks for visualization and classification [M]. Information and Classification-Concepts, Methods, and Applications. Opitz O, Lausen B, Klar R (Eds.). Berlin: Springer-VerlagGoogle Scholar
  20. [20]
    Vesanto J, Himberg J, Alhoniemi E, et al.(2000) SOM toolbox for Matlab 5 [R]. Technical Report A57, Helsinki University of Technology, FinlandGoogle Scholar
  21. [21]
    Kohonen T, Kaski S, Lagus K, et al. (2000) Self organization of a massive document collection [J]. IEEE Transactions on Neural Networks, 11(3): 574–585CrossRefGoogle Scholar
  22. [22]
    Skupin A (2001) Cartographic considerations for maplike interfaces to digital libraries [OL]. Last date accessed 10.2009
  23. [23]
    Skupin A (2002) A Cartographic approach to visualizing conference abstracts [J]. IEEE Computer Graphics and Applications, 22(1): 50–58CrossRefGoogle Scholar
  24. [24]
    Berkhin P (2006) A Survey of clustering data mining techniques [M]. Grouping Multidimensional Data-Recent Advances in Clustering. Kogan J, Teboulle M, Nicholas C, (Eds.). Berlin, Heidelberg, New York: SpringerGoogle Scholar
  25. [25]
    Gorg C, Pohl M, Qeli E, et al. (2006) Visual representations [M]. Human-Centered Visualization Environments. Kerren A, Ebert A, Meyer J, (Eds.). Berlin, Heidelberg: SpringerGoogle Scholar
  26. [26]
    Lakoff G, Johnson M (1980) Metaphors we live by [M]. Chicago: The University of Chicago PressGoogle Scholar
  27. [27]
    Skupin A, Fabrikant S I (2003) Spatialization methods: a cartographic research agenda for non-geographic information visualization [J]. Cartography and Geographic Information Science, 30(2): 95–119CrossRefGoogle Scholar
  28. [28]
    Kulyk O, Kosara R, Urquiza J, et al.(2006) Human-centered aspects [B]. Human-Centered Visualization Environments. Kerren A, Ebert A, Meyer J, (Eds.). Berlin, Heidelberg: SpringerGoogle Scholar
  29. [29]
    Nollenburg M (2006) Geographic Visualization [M]. Human-Centered Visualization Environments. Kerren A, Ebert A, and Meyer J, (Eds.). Berlin, Heidelberg: SpringerGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kontaxaki Sofia
    • 1
  • Kokla Margarita
    • 1
  • Kavouras Marinos
    • 1
  1. 1.School of Rural and Surveying EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations