Advertisement

Journal of Marine Science and Application

, Volume 18, Issue 3, pp 282–294 | Cite as

Numerical Simulation of Marine Vehicle Immersed in Water

  • Benamar Derrar
  • Benameur HamoudiEmail author
  • Mohammed El-Amine Dris
  • Fethi Saidi
Research Article
  • 74 Downloads

Abstract

This article presents a numerical study of the forces induced by hydrodynamic impact, that is, the impact of a part of the bottom of the hull on the water surface. The prediction of these efforts is often based on numerical simulations to determine the shock intensity of a structure on the surface of a weakly compressible fluid (for example, water). The short duration of the impact is also investigated in this work. This phenomenon occurs especially when a ship encounters a harsh and difficult sea conditions. Under such conditions, it is important to know how to predict the hydrodynamic forces applied to the structure to correctly optimize the ship elements during its design stage or to prevent possible damage. Indeed, various factors such as speed of the ship and height of the swell can cause the hull to partially emerge and then fall violently onto the water surface, which is referred to by naval personnel as tossing or slamming causing vibrations, stresses, and fatigue to the structural elements of the ship. In this work, we present an example of phenomenon modeling and then a numerical study of the different geometries (dihedron) that play a role in different sections of the bow. Then, we compare our present results with the theoretical and experimental results of other researchers in the field. The average interval impact time for a dihedral model corresponding to the section of the chosen ship and other experimental and theoretical data is in good agreement with the experimental and theoretical measurements.

Keywords

Slamming Hydrodynamic impact Aero-hydro-elastic Dihedral Fluid/structure interaction Marine vehicle 

References

  1. Alan T (2010) Modélisation Tridimensionnelle d’Impacts Hydrodynamiques pour l’Etude du Tossage des Bulbes d’Etrave. P.hD. thesis, Laboratoire Brestois de Mécanique et des Systèmes. Ecole Doctorale SICMA (E.D. 373). EA4325 ENSIETA. Université de Bretagne Occidentale. ENIB.:2010Google Scholar
  2. Albert Z (2005) Ship load model on large amplitude waves. Revue. Faculty of Engineering, Department of Naval Architecture and Ocean Engineering. University of Rijeka, Croatia.  https://doi.org/10.1201/9781439833728.ch39 Google Scholar
  3. Antoinat L, Kubler R, Achard G, Barrallier L (2013) Etude d’un Programmateur d’Impact Solide Equivalent à un Impact à l’Eau. ParisTech, laboratoire MSMP, 21ème Congrès Français de Mécanique, BordeauxGoogle Scholar
  4. Carmine C (2010) Numerical simulation of fluid/structure interaction comparing SPH and ALE approaches. Sixth pegasus-AIAA student conference. Sevilla, SpainGoogle Scholar
  5. Chuang SL (1966) Experiments on flat-bottom slamming. J Ship Res 10(1):10–17Google Scholar
  6. Chuang SL (1967) Experiments on slamming of wedge-shaped bodies. J Ship ResGoogle Scholar
  7. Constantinescu A (2006). Modélisation 2D de l’Impactd’une Structure sur l’Eau. Ph.D thesis, Initiation de l’endommagement. Université de Bretagne OccidentaleGoogle Scholar
  8. Derrar B, Hamoudi B (2012) Etude Numérique d’Impact Hydrodynamique entre une Structure et une Surface Libre. 1er Congrès International d’Aéro-Hydrodynamique Naval (CIAHN-2012). Oran, AlgérieGoogle Scholar
  9. Derrar B, Hamoudi B (2013) Etude Théorique d’Impact et d’Immersion entre une Structure et une Surface Libre. 1èreConférence Internationale sur les Sciences Aéronautiques (I.C.A.S’ 01). Oran, AlgérieGoogle Scholar
  10. Derrar B, Hamoudi B, Nadji C (2014) Etude, Evaluation Formulaire d’Impact Hydrodynamique d’une Structure Flottante. 3eme Conférence Internationalesur les Matériaux et les Structures en Composite (CIMSC’14). Oran, AlgérieGoogle Scholar
  11. Destuynder P, Fabre C (2012) Modélisation du Comportement Hydrodynamique des Bateaux. Cours donné à l’Ecole d’Ingénieurs de Kénitra, Maroc (ENSA) du 25 au 28 juin 2012 dans le cadre du projet MNOTSIGoogle Scholar
  12. Faltinsen O (2002) Water entry of a wedge with finite deadrise angle. J Ship Res 46(1):39–51Google Scholar
  13. Fontaine E, Boudet L, Leguen JF, Magee A (1997) Etude Impact Hydrodynamique d’un Corps Allonge et Plat: Application au Tossage. 6ème Journées de l’hydrodynamique. ECOLE Centrale de Nantes, FranceGoogle Scholar
  14. Guilmineau E, Leroyer A, Visonneau M, Naciri M, Ory E (2010) Numerical Simulation of a Moored Ship. Equipe Modéliation Numérique, Laboratoire de Mécanique des Fluides, CNRS UMR 6598. Ecole Centrale de Nantes, 12ème Journée de l’Hydrodynamique, Nantes, FranceGoogle Scholar
  15. Hamoudi B (1995) Dynamic response of hull due to bottom slamming and deck wetness. Ph.D thesis, University of GlasgowGoogle Scholar
  16. Howison SD, Ockendon JR, Wilson SK (1991) Incompressible water-entry problems at small deadrise angels. J Fluid Mech 222:215.  https://doi.org/10.1017/S0022112091001076 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Jacques N, Constantinescu A, Kerampran S, Neme A (2007) Comparaison de Déférentes Méthodes pour la Simulation Numérique de l’Impact Hydrodynamique. Laboratoire de Mécanique des Structures Navales (MSN). 11èmes Journées de l’Hydrodynamique.Brest, FranceGoogle Scholar
  18. Lewison GRG (1970) On the reduction of slamming pressures. Trans. RINA, 2, and, National Physical Laboratory, Ship Report 138Google Scholar
  19. Lloyd ARJM (1989) Seakeeping: ship behaviour in rough weather, London. Ellis Horwood Ltd. The Royal Institute of NavigationGoogle Scholar
  20. Malleron N (2009) Contribution à l’Etude des Interactions Fuide/Structure pour l’Analyse de l’Impact Hydrodynamique d’un Système de Flottabilité d’Hélicoptère. Cours Physics, Université de la Méditerranée - Aix-Marseille II, 2009. FranceGoogle Scholar
  21. Nicolas A (2004) Modélisation de l’impact hydrodynamique par un couplage fluide/structure. Ph.D thesis, Université des Sciences et technologies de lille, Villeneuve d’Ascq, FranceGoogle Scholar
  22. Oliver J M (2002) Water-Entry and Related Problems. PhD thesis, OxfordGoogle Scholar
  23. Ribet H (1997) Modélisation Numérique d’Impact sur l’Eau d’une Structure Souple par une Méthode Élément Finis Explicite. Convention de Recherche Université Paul Sabatier (Toulouse) - Aérospatiale, 6ème Journée de l’Hydrodynamique, Nantes, FranceGoogle Scholar
  24. Roger WP (2011) Multiphysics modeling (using) Comsol a first principles approach. Copyright by Jones and Bartlett Publishers, LLCGoogle Scholar
  25. Ropars J (1962) La Théorie du Navire Appliquée au Navire de Commerce. Suivie d'une étude sur les fatigues du navire. Éditions Maritimes et d’Outre-mer Bordeaux, ParisGoogle Scholar
  26. Rouss JM, Pettinotti B, Quillard O, Toularastel JL, Ferrant P (1973) Slamming experiments on a ship model. Hydrodynamics and Ocean Eng. Group, Fluids Mech. Lab. - UMR 6598 CNRS/Centrale Nantes, FranceGoogle Scholar
  27. Rouss JM, Couty N, Toularastel JL, Pettinotti B, Ferrant P (2005) Etude Expérimentale du Tossage sur un Navire. 10ème Journées de l’hydrodynamique. Equipe Hydrod-ynamique et Génie Océanique. Nantes, FranceGoogle Scholar
  28. Scolan YM (2012) Hydrodynamic loads during impact of a three-dimensional body with an arbitrary kinematics. ENSTA-Bretagne. Verny 29806 Brest Cedex 9, FranceGoogle Scholar
  29. Scolan Y-M, Coche E, Condray T, Fontaine E (1999) Etude Analytique et Numérique de l’Impact Hydrodynamique sur des Carènes Dissymétriques. Revue. 7ème Journées de l’hydrodynamique, Marseille, FranceGoogle Scholar
  30. Sébastien E (2013) Propagation d’une Onde de Choc en Présence d’une Barrière de Protection. P.hD. thesis, Ecole Doctorale Energie, Materiaux, Sciences de la Terre et de l’Univers. Universitéd’OrléansGoogle Scholar
  31. Souali M, Nicolas A (2002) An overview of fluid/structure interaction. In: Recent development and applications. Revue Laboratoire de mécanique de Lille, FranceGoogle Scholar
  32. Temarel P (2006) Loads on ships, Volume 1. 16th international ship and offshore structures congress. Southampton, UKGoogle Scholar
  33. Tveitnes T, Fairlie-Clarke AC, Varyani K (2008) An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Eng 35(14–15):1463–1478.  https://doi.org/10.1016/j.oceaneng.2008.06.012 CrossRefGoogle Scholar
  34. Van Daalen EFG (1993) Numerical and theoretical studies of water waves and floating bodies. Ph.D thesis, University of Twente. Enschede, Pays-BasGoogle Scholar
  35. Verhagen JHG (1967) The impact of flat on a water surface. J Ship Res 11:211–223Google Scholar
  36. Xia J (2005) A consistent strip-theory approach for wave loads and ship motions in rough seas. Proc 20th Int workshop on water waves and floating bodies IWWWFB, NorwayGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Benamar Derrar
    • 1
  • Benameur Hamoudi
    • 1
    Email author
  • Mohammed El-Amine Dris
    • 2
  • Fethi Saidi
    • 1
  1. 1.Aerohydrodynamic Laboratory, Department of Maritime Engineering, Faculty of Mechanical EngineeringUniversity of Sciences and Technology of Oran Mohamed BoudiafEl’Mnaouer, OranAlgeria
  2. 2.Department of HydraulicsUniversity Djillali Liabes of Sidi Bel-AbbesSidi Bel AbbèsAlgeria

Personalised recommendations