Journal of Marine Science and Application

, Volume 17, Issue 2, pp 241–253 | Cite as

Empirical Equilibrium Beach Profiles Along the Eastern Tombolo of Giens

  • Minh Tuan VuEmail author
  • Yves Lacroix
  • Viet Thanh Nguyen
Research Article


Beaches along the eastern branch of the Giens double tombolo are subject to coastal erosion. Prediction of the behavior of the beach profile configuration in response to natural and anthropogenic changes using the concept of equilibrium beach profile (EBP) could be useful in finding the most suitable measure to address the erosion problem. Field investigation data of 11 beaches along the eastern tombolo were supplied for this study, and a nonlinear fitting technique was applied to estimate the best parameter values of seven empirical formulations of the relevant EBP. All of the observed beach profiles could be described by a single function, but a single EBP was inadequate to represent all of the beach profiles observed. The variation found could be explained in terms of longshore variation of bathymetry, sediment size, and wave parameters. Analysis of the validity of the EBPs revealed that a representative EBP of each beach is governed by different equilibrium parameters.


Equilibrium beach profile Eastern tombolo of Giens Exponential function Logarithmic function Potential function, erosion, and accretion 



The authors are grateful to IGN, EGB, EOL, CETMEF, IFREMER, SHOM, and ECMWF for the kindly provided measured data. We warmly thank Assoc. Prof. Dr. Wang Gang in Hohai University, Nanjing, China, for his comments. We are also thankful to several anonymous reviewers for helpful reviews and discussions.


  1. Aragonés L, Serra JC, Villacampa Y, Saval JM, Tinoco H (2015) New methodology for describing the equilibrium beach profile applied to the Valencia’s beaches. Geomorphology 259:1–11CrossRefGoogle Scholar
  2. Bernabeu AM, Medina R, Vidal C (2003) A morphological model of the beach profile integrating wave and tidal influences. Mar Geol 197(1–4):95–116. CrossRefGoogle Scholar
  3. Bodge KR (1992) Representing equilibrium beach profiles with an exponential expression. J Coast Res 8(1):47–55Google Scholar
  4. Bruun P (1954) Coast erosion and the development of beach profiles: U.S. Beach Erosion Board 44:1–79.Google Scholar
  5. Courtaud J (2000) Dynamiques geomorphologiques et risques littoraux cas du tombolo de giens (Var, France méridionale). (Ph.D. dissertation), Université Aix-Marseille IGoogle Scholar
  6. Dai Z-J, Du J-Z, Li C-C, Chen Z-S (2007) The configuration of equilibrium beach profile in South China. Geomorphology 86(3–4):441–454. CrossRefGoogle Scholar
  7. Dean RG (1977) Equilibrium beach profiles: U.S. Atlantic and Gulf coasts. Center for Apllied Coastal Research 12:1–45Google Scholar
  8. Dean RG (1987) Coastal sediment processes: toward engineering solutions. American Society of Civil Engineers, Proceedings of Coastal Sediments '87, 24Google Scholar
  9. Dean RG (1991) Equilibrium beach profiles: characteristics and applications. J Coast Res 7(1):53–84Google Scholar
  10. Dean RG, Dalrymple RA (2004) Coastal processes with engineering applications. Cambridge University Press, CambridgeGoogle Scholar
  11. E.O.L (2010) Suivi de l'évolution des plages de la commune Hyères-les-palmiers. Commune de Heres-Les-Palmiers 4:1–94Google Scholar
  12. Gacia E, Granata TC, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65(1–4):255–268. CrossRefGoogle Scholar
  13. Gómez-Pujol L, Orfila A, Álvarez-Ellacuría A, Tintoré J (2011) Controls on sediment dynamics and medium-term morphological change in a barred microtidal beach (Cala Millor, Mallorca, Western Mediterranean). Geomorphology 132(3–4):87–98. CrossRefGoogle Scholar
  14. Hallermeier RJ (1981) Fall Velocity of Beach Sands. United States Army. Corps of Engineers, Coastal Engineering Research Center 6:1–2Google Scholar
  15. Hamm L, Capobianco M, Dette HH, Lechuga A, Spanhoff R, Stive MJF (2002) A summary of European experience with shore nourishment. Coast Eng 47(2):237–264. CrossRefGoogle Scholar
  16. Jeudy De Grissac A (1975) Sédimentologie dynamique des rades d'Hyères et de Giens (Var). Problèmes d'Aménagements. (Ph.D. dissertation), Université d'Aix-Marseille II, MarseilleGoogle Scholar
  17. Kaiser MFM, Frihy OE (2009) Validity of the equilibrium beach profiles: Nile Delta Coastal Zone, Egypt. Geomorphology 107(1–2):25–31. CrossRefGoogle Scholar
  18. Komar PD, McDougal GW (1994) The analysis of exponential beach profiles. J Coast Res 10(1):59–69Google Scholar
  19. Kombiadou K, Ganthy F, Verney R, Plus M, Sottolichio A (2013) Modelling the effects of Zostera noltei meadows on sediment dynamics: application to the Arcachon lagoon. Ocean Dyn 64(10):1499–1516. CrossRefGoogle Scholar
  20. Lacroix Y, Vu MT, Than VV, Nguyen VT (2015) Modeling the effect of geotextile submerged breakwater on hydrodynamics in La Capte beach. Paper presented at the Vietnam-Japan Workshop on Estuaries, Coasts and Rivers, Hoi An, VietnamGoogle Scholar
  21. Lee PZ-F (1994) The submarine equilibrium profile: a physical model. J Coast Res 10(1):1–17Google Scholar
  22. MathWorks (2015) Curve fitting toolbox-user’s guide 212Google Scholar
  23. Medina JR, Tintoré J, Duarte CM (2001) Las praderas de Posidonia oceanica y la regeneración de playas. Revista de obras publicas 3409:31–43Google Scholar
  24. Nguyen VT, Zheng J-H, Zhang C (2012) Beach profiles characteristics along Giao Thuy and Hai Hau coasts, Vietnam: a field study. China Ocean Eng 26(4):699–712. CrossRefGoogle Scholar
  25. Nicholls RJ, Birkemeier WA, Hallermeier RJ (1996) Application of the depth of closure concept. Coast Eng 25:3874–3887Google Scholar
  26. OCEANIDE (2010) Etude pour la protection de la plage du Ceinturon et du secteur Sud du port Saint-Pierre - Phase 1 : Synthèse des connaissances 1:1–143Google Scholar
  27. Ranasinghe R, Turner IL (2006) Shoreline response to submerged structures: a review. Coast Eng 53(1):65–79. CrossRefGoogle Scholar
  28. Romańczyk W, Boczar-Karakiewicz B, Bona JL (2005) Extended equilibrium beach profiles. Coast Eng 52(9):727–744. CrossRefGoogle Scholar
  29. Sierra J, Presti A, Sánchez-Arcilla A (1994) An attempt to model longshore sediment transport on the Catalan coast. Coastal Engineering 1994:2625–2638 American Society of Civil EngineersGoogle Scholar
  30. SOGREAH (1988) Etudes sédimentologiques de la rade d Hyères. Littoral de port Pothuau à la Badine 4:1–64Google Scholar
  31. Thieler ER, Pilkey OH Jr, Young RS, David MB, Chai F (2000) The use of mathematical models to predict beach behavior for U.S. coastal engineering: a critical review. J Coast Res 16(1):48–70Google Scholar
  32. Vellinga P (1987) Beach and dune erosion during storm surges. Coast Eng 6(4):361–387. CrossRefGoogle Scholar
  33. Vu MT, Lacroix Y, Nguyen VT (2017) Investigating the impacts of the regression of Posidonia oceanica on hydrodynamics and sediment transport in Giens Gulf. Ocean Eng 146:70–86. CrossRefGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Minh Tuan Vu
    • 1
    • 2
    Email author
  • Yves Lacroix
    • 1
    • 3
  • Viet Thanh Nguyen
    • 2
  1. 1.SEATECHUniversity of ToulonLa Valette-du-VarFrance
  2. 2.University of Transport and CommunicationsHanoiVietnam
  3. 3.MEMOCSUniversità Degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations